The highest point = crest
lowest point = trough
Answer:
A planet's <u>hydrosphere</u> can be<u> liquid</u>, <u>vapor</u>, or <u>ice</u>. On Earth, in the places at the <u>north and south pole</u>, water exists in ice or glacier form, in the <u>atmosphere</u> it exists in vapor form and liquid water exists on the <u>surface</u> in the form of oceans, lakes and rivers. It also exists below ground as <u>groundwater</u>, in wells and aquifers. Water collects in clouds, then falls to Earth in the form of <u>rain or snow</u>,
<em>Hope it helps</em>
<em>:D</em>
<em />
Answer:
a. 5.36x10⁻⁴ g/mL
b. 4.29x10⁻⁵ g/mL
Explanation:
As the units for concentration are not specified, I'll respond using g/mL.
a. We <em>divide the sample mass by the final volume</em> in order to <u>calculate the concentration</u>:
- 0.268 g / 500 mL = 5.36x10⁻⁴ g/mL
b. We can use C₁V₁=C₂V₂ for this question:
- 8.00 mL * 5.36x10⁻⁴ g/mL = C₂ * 100.00 mL
Answer:
Hygroscopic
Explanation:
An hygroscopic substance is one that absorbs moisture from the atmosphere and becomes wet. Their ability to remove water from air is less than that of deliquescent substances. Most of the solid hygroscopic substances forms pasty substances and not solutions like the deliquescent compounds.
Examples are sodium trioxonitrate(v), copper(ii) oxide e.t.c
Efflorescence compounds gives off their water of crystallization to the atmosphere.