the answer to your question is
volume
Using the Henderson-Hasselbalch equation on the solution before HCl addition: pH = pKa + log([A-]/[HA]) 8.0 = 7.4 + log([A-]/[HA]); [A-]/[HA] = 4.0. (equation 1) Also, 0.1 L * 1.0 mol/L = 0.1 moles total of the compound. Therefore, [A-] + [HA] = 0.1 (equation 2) Solving the simultaneous equations 1 and 2 gives: A- = 0.08 moles AH = 0.02 moles Adding strong acid reduces A- and increases AH by the same amount. 0.03 L * 1 mol/L = 0.03 moles HCl will be added, soA- = 0.08 - 0.03 = 0.05 moles AH = 0.02 + 0.03 = 0.05 moles Therefore, after HCl addition, [A-]/[HA] = 0.05 / 0.05 = 1.0 Resubstituting into the Henderson-Hasselbalch equation: pH = 7.4 + log(1.0) = 7.4, the final pH.
Explanation: cell in the body is enclosed by a cell (Plasma) membrane. The cell membrane separates the material outside the cell, extracellular, from the material inside the cell, intracellular. ... All materials within a cell must have access to the cell membrane (the cell's boundary) for the needed exchange
**Answer**: The answer would be Yes I believe
Answer:
2M
Explanation:
Molarity refers to the molar concentration of a solution. It can be calculated by using the formula as follows:
Molarity (M) = number of moles (n) ÷ volume (V)
Based on the information provided in this question, 2 moles of salt is dissolved to form 1 liter of solution. This means that n = 2mol, V = 1L
Molarity = n/V
Molarity = 2/1
Molarity = 2M
I believe the correct answer from the choices listed above is option B. A double-replacement reaction happens when atoms in one compound switch places with atoms in another compound. <span> It is a type of chemical </span>reaction<span> where two compounds </span>react<span>, and the positive ions (cation) and the negative ions (anion) of the two reactants switch places. Hope this answers the question.</span>