1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
3 years ago
14

Type nae nae for 5 marks

Mathematics
2 answers:
UkoKoshka [18]3 years ago
8 0

Answer:nae nae

Step-by-step explanation:

baherus [9]3 years ago
7 0

Answer:

nae nae

Step-by-step explanation:

You might be interested in
Help again <br> álgebra 1
OLga [1]

Answer:

A (4,6)

ok im going to go through this step by step

4(4)=3(6)-2

16=18-2

16=16 (true solution)

18=3(4)+(6)

18=12+6

18=18 (true solution)

4 0
3 years ago
The base of an aquarium with given volume V is made of slate and the sides are made of glass. If the slate costs seven times as
Olin [163]

Answer:

x = ∛(2V/7)

y = ∛(2V/7)

z = 3.5 [∛(2V/7)]

{x,y,z} = { ∛(2V/7), ∛(2V/7), 3.5[∛(2V/7)] }

Step-by-step explanation:

The aquarium is a cuboid open at the top.

Let the dimensions of the base of the aquarium be x and y.

The height of the aquarium is then z.

The volume of the aquarium is then

V = xyz

Area of the base of the aquarium = xy

Area of the other faces = 2xz + 2yz

The problem is to now minimize the value of the cost function.

The cost of the area of the base per area is seven times the cost of any other face per area.

With the right assumption that the cost of the other faces per area is 1 currency units, then, the cost of the base of the aquarium per area would then be 7 currency units.

Cost of the base of the aquarium = 7xy

cost of the other faces = 2xz + 2yz

Total cost function = 7xy + 2xz + 2yz

C(x,y,z) = 7xy + 2xz + 2yz

We're to minimize this function subject to the constraint that

xyz = V

The constraint can be rewritten as

xyz - V = 0

Using Lagrange multiplier, we then write the equation in Lagrange form

Lagrange function = Function - λ(constraint)

where λ = Lagrange factor, which can be a function of x, y and z

L(x,y,z) = 7xy + 2xz + 2yz - λ(xyz - V)

We then take the partial derivatives of the Lagrange function with respect to x, y, z and λ. Because these are turning points and at the turning point, each of the partial derivatives is equal to 0.

(∂L/∂x) = 7y + 2z - λyz = 0

λ = (7y + 2z)/yz = (7/z) + (2/y) (eqn 1)

(∂L/∂y) = 7x + 2z - λxz = 0

λ = (7x + 2z)/xz = (7/z) + (2/x) (eqn 2)

(∂L/∂z) = 2x + 2y - λxy = 0

λ = (2x + 2y)/xy = (2/y) + (2/x) (eqn 3)

(∂L/∂λ) = xyz - V = 0

We can then equate the values of λ from the first 3 partial derivatives and solve for the values of x, y and z

(eqn 1) = (eqn 2)

(7/z) + (2/y) = (7/z) + (2/x)

(2/y) = (2/x)

y = x

Also,

(eqn 1) = (eqn 3)

(7/z) + (2/x) = (2/y) + (2/x)

(7/z) = (2/y)

z = (7y/2)

Hence, at the point where the box has minimal area,

y = x,

z = (7y/2) = (7x/2)

We can then substitute those into the constraint equation for y and z

xyz = V

x(x)(7x/2) = V

(7x³/2) = V

x³ = (2V/7)

x = ∛(2V/7)

y = x = ∛(2V/7)

z = (7x/2) = 3.5 [∛(2V/7)]

The values of x, y and z in terms of the volume that minimizes the cost function are

{x,y,z} = {∛(2V/7), ∛(2V/7), 3.5[∛(2V/7)]}

Hope this Helps!!!

7 0
3 years ago
Solve the equation by factoring. X^2+2x-63=0
DanielleElmas [232]

Answer:

x = -9 ; x = 7

Step-by-step explanation:

We have to find two numbers whose product is -63 and whose sum is 2

the two numbers are 9 and -7

(x+9)(x-7) = 0

x = -9

x = 7

8 0
3 years ago
What is the equation of a line that passes through the point (6, 1) and is perpendicular to the line whose equation is y=−2x−6 ?
ladessa [460]

Answer:

y=\frac{1}{2}x-2

Step-by-step explanation:

we are given

Line is perpendicular to y=−2x−6

we can compare it with

y=mx+b

where

m is slope

so, m=-2

so, slope is -2

Our line is perpendicular to this slope

so, slope of our line will be

m'=-\frac{1}{-2}

m'=\frac{1}{2}

now, we are given point as (6,1)

so, x_1=6,y_1=1

now, we can use point slope form of line

y-y_1=m(x-x_1)

we can plug values

y-1=\frac{1}{2}(x-6)

now, we can solve for y

and we get

y=\frac{1}{2}x-2


5 0
3 years ago
Solve.<br><br><br><br>−0.55p − 7 = 0.45p<br><br><br><br>The solution is p =<br>HELPP PLZ
devlian [24]

Answer:

p=-7

Step-by-step explanation:

-0.55p-7=0.45p

-7=0.45p+0.55p

-7=p

5 0
3 years ago
Other questions:
  • A tennis supply store pays a wholesaler $90 for a tennis racket and sells it for $144. What is the markup rate
    7·1 answer
  • How do I find side a?
    12·2 answers
  • Compute the circumference of a circle with radius 12 ft.​
    8·1 answer
  • GEOMETRY HELP!!! FIND X AND ROUND TO THE NEAREST TENTH!!! PLEASE EXPLAIN!!!
    8·1 answer
  • A ball travels on a straight surface at 20 ft/sec it begins to decrease at 6 ft/sec How far will it travel ?
    7·2 answers
  • I needa help please?!
    8·2 answers
  • 3 sides of a triangle measures 5, 8 , and 8. Classify the triangle
    15·2 answers
  • Find c. Round to the nearest tenth:
    10·1 answer
  • Q#1:The volume of a cube is 46656 cubic metres.Find the length of each side?
    7·1 answer
  • Find the vector that translate A (-2, 7) to A' (6,4) *
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!