There are 5 solutions for this system.
x^2 + 4y^2 = 100 ____1
4y - x^2 = -20 ____2
Add both 1 & 2 together. x^2 gets cancelled
4y^2 + 4y = 80 (send 80 to the other side and divide by 4)
Then equation the becomes : y^2 + y -20 =0
Now factorise the equation: (y+5) (y-4) = 0
Solve for y : y = -5 and y = 4
Using the values of y to find the values of x. From equation 1:
x^2 = 100 - 4y^2 x = /100 - 4y^2 (/ means square root) Replace values of y
y = -5, x = /100 - 4(-5)^2 = /100 - 100 = 0
y = 4, x = /100 - 4(4)^2 = / 100 - 64 = /36 = -6 or 6
Thus we have 6 solutions y = -5, 4 and x = -6, 0, 6
We know that the area of a circle in terms of π will be πr². However the area with respect to the diameter will be a different story. The first step here is to find a function relating the area and diameter of any circle --- ( 1 )
For any circle the diameter is 2 times the radius,
d = 2r
Therefore r = d / 2, which gives us the following formula through substitution.
A = π(d / 2)² = πd² / 4
<u>Hence the area of a circle as the function of it's diameter is A = πd² / 4. You can also say f(d) = πd² / 4.</u>
Now we can substitute " d " as 4, solving for the area ( A ) or f(4) --- ( 2 )
f(4) = π(4)² / 4 = 16π / 4 = 4π - <u>This makes the area of circle present with a diameter of 4 inches, 4π.</u>
Answer:
(D)5
Step-by-step explanation:
Given the point J(-3,1) and K(8,11).
The line segment that divides the segment from J to K in any given ratio can be determined using the formula.

In the given case:
, m:n=2:3
Since we are to determine the y-coordinate of the point that divides JK into a ratio of 2:3, we have:

The y-coordinate of the point that divides the directed line segment from J to K into a ratio of 2:3 is 5.
The correct option is D.
Answer:
Is this algebra, or does "x" represent multiplying?
Step-by-step explanation:
I cant help unless theres a picture, sorry :/