A buffer solution contains an equivalent amount of acid and base. The pH of the solution with an acid dissociation constant (pKa) value of 3.75 is 3.82.
<h3>What is pH?</h3>
The amount of hydrogen or the proton ion in the solution is expressed by the pH. It is given by the sum of pKa and the log of the concentration of acid and bases.
Given,
Concentration of salt [HCOO⁻] = 0.24 M
Concentration of acid [HCOOH] = 0.20 M
The acid dissociation constant (pKa) = 3.75
pH is calculated from the Hendersons equation as,
pH = pKa + log [salt] ÷ [acid]
pH = 3.75 + log [0.24] ÷ [0.20]
= 3.75 + log (1.2)
= 3.75 + 0.079
= 3.82
Therefore, 3.82 is the pH of the buffer.
Learn more about pH here:
brainly.com/question/27181245
#SPJ4
Answer:
1) 0.18106 M is the molarity of the resulting solution.
2) 0.823 Molar is the molarity of the solution.
Explanation:
1) Volume of stock solution =
Concentration of stock solution =
Volume of stock solution after dilution =
Concentration of stock solution after dilution =
( dilution )
0.18106 M is the molarity of the resulting solution.
2)
Molarity of the solution is the moles of compound in 1 Liter solutions.
Mass of potassium permanganate = 13.0 g
Molar mass of potassium permangante = 158 g/mol
Volume of the solution = 100.00 mL = 0.100 L ( 1 mL=0.001 L)
0.823 Molar is the molarity of the solution.
Answer:
74.344 kJ.
Explanation:
Below is an attachment containing the solution.
Answer:
Explanation:
Hello,
In this case, during titration at the equivalence point, we find that the moles of the base equals the moles of the acid:
That it terms of molarities and volumes we have:
Next, solving for the volume of lithium hydroxide we obtain:
Best regards.
Answer:
Copper is a metal made up of copper atoms closely packed together. As a result, the electrons can move freely through the metal. For this reason, they are known as free electrons. They are also known as conduction electrons because they help copper be a good conductor of heat and electricity.
Explanation: