The reactivity of a metal is determined by these things.
Firstly, the number of electrons in the outer shell; the fewer the number of electrons in the outer shell, the more reactive the metal.
The number of electron shells also affects reactivity, the more electron shells there are, the more reactive the metal.
Answer:
The ionization equation is
⇄
(1)
Explanation:
The ionization equation is
⇄
(1)
As the Bronsted definition sais, an acid is a substance with the ability to give protons thus, H2PO4 is the acid and HPO42- is the conjugate base.
The Ka expression is the ratio between the concentration of products and reactants of the equilibrium reaction so,
![Ka = \frac{[HPO_{4}^{-2}] [H_{3}O^{+}]}{[H_{2}PO_{4}^{-}] [H_{2}O]} = 6.2x10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BHPO_%7B4%7D%5E%7B-2%7D%5D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BH_%7B2%7DPO_%7B4%7D%5E%7B-%7D%5D%20%5BH_%7B2%7DO%5D%7D%20%3D%206.2x10%5E%7B-8%7D)
The pKa is

The pKa of H2CO3 is 6,35, thus this a stronger acid than H2PO4. The higher the pKa of an acid greater the capacity to donate protons.
In the body H2CO3 is a more optimal buffer for regulating pH due to the combination of the two acid-base equilibriums and the two pKa.
If the urine is acidified, according to Le Chatlier's Principle the equilibrium (1) moves to the left neutralizing the excess proton concentration.
Answer:option A
Multiple reactants are used to form one product.
To determine how stable the beads are as well ensue the securing of maximum enzymes as well as the retention of their activity.
<h3>What is concentration?</h3>
The concentration of a substance simply means the amount of the substance in solution. Thus we are looking at the amounts of sodium alginate and CaCl2 in the system.
The concentrations of the sodium alginate and CaCl2 is varied in order to determine how stable the beads are as well ensue the securing of maximum enzymes as well as the retention of their activity.
Learn more about enzymes:brainly.com/question/14953274
#SPJ1
A product is always yield as a result of a chemical reaction
hope that helps