Answer:
A molecule exists when two or more atoms join together by forming chemical bonds. ... When atoms of at least two different elements come together to form chemical bonds, these molecules can be called compounds. Sodium chloride (NaCl) is a classic example of an ionic compound, or compound formed by ionic bonds.
Explanation:
The products of chemical reactions often have completely different properties than the reactants, like viscosity, boiling and melting temperatures, etc.
That is because the atoms form new and different bonds to give the products.
To find the molecular formula from the empirical formula, you need to find a multiple (x) that will give you the molar mass of the compound which in the question is 54 g/mol.
If C₂H₃ is the empirical formula
molar mass of empirical formula = (12 × 2) + (1 × 3) g/mol
= 27 g/mol
let x = multiple
let molecular formula = C₂ₓ H₃ₓ
multiple = molecular mass ÷ empirical mass
= 54 g/mol ÷ 27 g/mol
= 2
If molecular formula = C₂ₓ H₃ₓ
then molecular formula = C₂₍₂₎H₃₍₂₎
= <span>C₄H</span>₆
Answer:
- <u><em>You should expect that the ionic bond in LiBr is stronger than the bond in KBr.</em></u>
<u><em /></u>
Explanation:
The<em> ionic bonds</em> are formed by the electrostatic attraction between the ions, cations and anions.
In KBr the cation is K⁺ and the anion is Br⁻.
In LiBr the cation is Li⁺ and the anion is Br⁻.
You must expect that the bond strength depends mainly on the charges present on each ion and the distance between them.
Nevertheless, the effect of the distance between the radius dominate the trendency of the bond strength, which makes that the ionic strength trend be related to the ionic radius trend.
Lithium is a smaller ion than Potassium (both are in the same group and Lithium is above Potassium).
Thus, you should expect that the Li ion is closer to the Br ion than what the K ion is to the Br ion and expect that the bond between a Li ion and the Br ion be stronger than the bond between the K ion and the Br ion.