25.9 kJ/mol. (3 sig. fig. as in the heat capacity.)
<h3>Explanation</h3>
The process:
.
How many moles of this process?
Relative atomic mass from a modern periodic table:
- K: 39.098;
- N: 14.007;
- O: 15.999.
Molar mass of
:
.
Number of moles of the process = Number of moles of
dissolved:
.
What's the enthalpy change of this process?
for
. By convention, the enthalpy change
measures the energy change for each mole of a process.
.
The heat capacity is the least accurate number in these calculation. It comes with three significant figures. As a result, round the final result to three significant figures. However, make sure you keep at least one additional figure to minimize the risk of rounding errors during the calculation.
Answer is: nuclear fission.
Nuclear fission<span> is </span>radioactive decay<span> process in which the </span>nucleus of an atom splits into smaller parts. <span> In this process produces free neutrons and gamma photons </span><span>and releases a very large amount of </span><span>energy.
</span>Nuclear fission produces energy for nuclear power and <span>nuclear weapons.</span>
John Dalton was a scientist who proposed that all matter consists of atoms. At this stage, no one had yet discovered neutrons and the nucleus. As a result, Dalton's model consisted of a single atom i.e. the atom was the smallest object.
A mass spectrometer is an instrument that is able to see what is inside an atom. Scientists have been able to prove that the item is not the smallest object in the world. Atoms are made up of smaller objects called protons, neutrons and electrons.
We can, therefore, safely conclude that data from mass spectrometry has helped modern scientists to make modifications to Dalton's model. <span>
</span>
Answer:
An object at position A. has all potential energy
An object at position B. has about half potential and half kinetic energy
An object at position C. has all kinetic energy
Explanation:
I already did it and got all of them correct. I hope this helped!! :)
Answer:
if 12 moles are produced then it came 24 moles of Al(OH)3
Explanation: