Let's say the amount of nickels you have is hmm "n"
and the amount of dimes you have is "d"
there are 5cents in one nickel, so, if "n" is the total amount of nickels you have, that means 5 * n cents or 5n
there are 10cents in one dime, so, if "d" is the total amount of dimes you have, that means 10*d or 10d
whatever 5n and 10d are, we know that their sum is 595
since the total amount the counter said you have is, only 595 cents
thus 5n + 10d = 595
solve for either, "d" or "n", and graph that
what are three likely combinations? well, just pick three points off that graph
The diagonals of a rhombus are perpendicular bisectors of each other. You can use the Pythagorean theorem. If the diagonals are length "a" and "b", the side length of the rhombus (s) is
s = (1/2)√(a²+b²)
Answer + Step-by-step explanation:
![\frac{5^{10}}{5^{5}} =5^{10-5} = 5^5](https://tex.z-dn.net/?f=%5Cfrac%7B5%5E%7B10%7D%7D%7B5%5E%7B5%7D%7D%20%3D5%5E%7B10-5%7D%20%3D%205%5E5)
![\text{used property :} \ \ \ \frac{a^{m}}{a^{n}} =a^{m-n}](https://tex.z-dn.net/?f=%5Ctext%7Bused%20property%20%3A%7D%20%5C%20%20%5C%20%20%5C%20%20%5Cfrac%7Ba%5E%7Bm%7D%7D%7Ba%5E%7Bn%7D%7D%20%3Da%5E%7Bm-n%7D)
_______________________
![(4^8)^3 = a^{8 \times 3}=a^{24}](https://tex.z-dn.net/?f=%284%5E8%29%5E3%20%3D%20a%5E%7B8%20%5Ctimes%203%7D%3Da%5E%7B24%7D)
![\text{used property :} \ \ \ (a^n)^m = a^{n \times m}](https://tex.z-dn.net/?f=%5Ctext%7Bused%20property%20%3A%7D%20%5C%20%20%5C%20%20%5C%20%20%28a%5En%29%5Em%20%3D%20a%5E%7Bn%20%5Ctimes%20m%7D)
_______________________
![10^{-4}=\frac{1}{10^{4}} \ \text{not} \ \frac{1}{4^{10}}](https://tex.z-dn.net/?f=10%5E%7B-4%7D%3D%5Cfrac%7B1%7D%7B10%5E%7B4%7D%7D%20%5C%20%20%5Ctext%7Bnot%7D%20%5C%20%20%5Cfrac%7B1%7D%7B4%5E%7B10%7D%7D)
_______________________
15⁶ × 15³ = 15⁶⁺³ = 15⁹
_______________________
<u>Recall</u> : If a ≠0 ⇒ a⁰ = 1
Then
Since 6⁸ ≠ 0 ⇒ (6⁸)⁰ = 1
Answer:
B
Step-by-step explanation:
wanna sex
Use the distance formula.
Points S and W.
![\sqrt{(3)^2 + (2)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%283%29%5E2%20%2B%20%282%29%5E2%7D)
![\sqrt{9+4}](https://tex.z-dn.net/?f=%5Csqrt%7B9%2B4%7D)
![\sqrt{13}](https://tex.z-dn.net/?f=%5Csqrt%7B13%7D)
~3.6
Points S and T
![\sqrt{(3 - 0)^2 + (-2 - 0)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%283%20-%200%29%5E2%20%2B%20%28-2%20-%200%29%5E2%7D)
![\sqrt{(3)^2 + (-2)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%283%29%5E2%20%2B%20%28-2%29%5E2%7D)
![\sqrt{9+4}](https://tex.z-dn.net/?f=%5Csqrt%7B9%2B4%7D)
![\sqrt{13}](https://tex.z-dn.net/?f=%5Csqrt%7B13%7D)
~3.6
Points T and U
![\sqrt{(3 - 2)^2 + (-2 + 5)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%283%20-%202%29%5E2%20%2B%20%28-2%20%2B%205%29%5E2%7D)
![\sqrt{(1)^2 + (3)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%281%29%5E2%20%2B%20%283%29%5E2%7D)
![\sqrt{1+9}](https://tex.z-dn.net/?f=%5Csqrt%7B1%2B9%7D)
![\sqrt{10}](https://tex.z-dn.net/?f=%5Csqrt%7B10%7D)
~3.1
Points U and V
![\sqrt{(2+2)^2 + (-5 + 5)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%282%2B2%29%5E2%20%2B%20%28-5%20%2B%205%29%5E2%7D)
![\sqrt{(4)^2 + (0)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%284%29%5E2%20%2B%20%280%29%5E2%7D)
![\sqrt{16}](https://tex.z-dn.net/?f=%5Csqrt%7B16%7D)
~4
Points V and W
![\sqrt{(-2+3)^2 + (-5 + 2)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%28-2%2B3%29%5E2%20%2B%20%28-5%20%2B%202%29%5E2%7D)
![\sqrt{(1)^2 + (-3)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%281%29%5E2%20%2B%20%28-3%29%5E2%7D)
![\sqrt{2+9}](https://tex.z-dn.net/?f=%5Csqrt%7B2%2B9%7D)
![\sqrt{11}](https://tex.z-dn.net/?f=%5Csqrt%7B11%7D)
~3.3
Add all these together.
3.3 + 3.1 + 4 + 3.1 + 3.6
≈17