Add all of the sides together which then equal 76. So it would simplify to 14x+20=76. Then 14x=56. And 56/14=4. X=4
Answer:

The interval of convergence is:
Step-by-step explanation:
Given


The geometric series centered at c is of the form:

Where:
first term
common ratio
We have to write

In the following form:

So, we have:

Rewrite as:


Factorize

Open bracket

Rewrite as:

Collect like terms

Take LCM


So, we have:

By comparison with: 



At c = 6, we have:

Take LCM

r = -\frac{1}{3}(x + \frac{11}{3}+6-6)
So, the power series becomes:

Substitute 1 for a


Substitute the expression for r

Expand
![\frac{9}{3x + 2} = \sum\limits^{\infty}_{n=0}[(-\frac{1}{3})^n* (x - \frac{7}{3})^n]](https://tex.z-dn.net/?f=%5Cfrac%7B9%7D%7B3x%20%2B%202%7D%20%3D%20%20%5Csum%5Climits%5E%7B%5Cinfty%7D_%7Bn%3D0%7D%5B%28-%5Cfrac%7B1%7D%7B3%7D%29%5En%2A%20%28x%20-%20%5Cfrac%7B7%7D%7B3%7D%29%5En%5D)
Further expand:

The power series converges when:

Multiply both sides by 3

Expand the absolute inequality

Solve for x

Take LCM


The interval of convergence is:
Answer:
It is a perfect square. Explanation below.
Explanation:
Perfect squares are of the form
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
. In polynomials of x, the a-term is always x.(
(
x
+
c
)
2
=
x
2
+
2
c
x
+
c
2
)
x
2
+
8
x
+
16
is the given trinomial. Notice that the first term and the constant are both perfect squares:
x
2
is the square of x and 16 is the square of 4.
So we find that the first and last terms correspond to our expansion. Now we must check if the middle term,
8
x
is of the form
2
c
x
.
The middle term is twice the constant times x, so it is
2
×
4
×
x
=
8
x
.
Okay, we found out that the trinomial is of the form
(
x
+
c
)
2
, where
x
=
x
and
c
=
4
.
Let us rewrite it as
x
2
+
8
x
+
16
=
(
x
+
4
)
2
. Now we can say it is a perfect square, as it is the square of
(
x
+
4
)
.
Answer:
The answer would be 6y - 10x
Step-by-step explanation:
It was pretty easy!!!!!
Answer:
30 weeks
Step-by-step explanation:
7.25 x 20 = 1 WEEK
1 WEEK= 145$
4,350 divided by 145=30
30 weeks