They are equal because you can measure the percentage as a decimal with a maximum of 1.
Answer:
1. x = 10
2. x = 4
Step-by-step explanation:
I use the angle ABC method:
AB² + AC² = BC²
6² + 8² = x²
x = 10
AB² + AC² = BC²
3² + x² = 5²
x = 4
<em>H</em><em>O</em><em>P</em><em>E</em><em> </em><em>T</em><em>H</em><em>I</em><em>S</em><em> </em><em>H</em><em>E</em><em>L</em><em>P</em><em>S</em><em> </em><em>A</em><em>N</em><em>D</em><em> </em><em>H</em><em>A</em><em>V</em><em>E</em><em> </em><em>A</em><em> </em><em>N</em><em>I</em><em>C</em><em>E</em><em> </em><em>D</em><em>A</em><em>Y</em><em> </em><em><</em><em>3</em>
Answer: 40,320
Step-by-step explanation: Let's say that there is person A,B,C,D,E,F,G,H. and 8 chairs. For the first chair, 8 different people could potentially sit in it, making 8 different possibilities. No matter who sits there, the logic follows the next table. However, since one person is sitting in the first chair, there are 7 different possibilities about who would be sitting in the second chair. If you multiply the two together, there are 56 different possibilities just for the first and second chair. For the third chair, there are 6 different possibilities about whom could sit. Multiply 56*6 and you get 336 possibilities. Keep multiplying out and you get a grand total of 40,320 different arrangements!
Answer:
5
Step-by-step explanation: