1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
3 years ago
11

Which job here requires the least amount of training and education

Mathematics
2 answers:
gizmo_the_mogwai [7]3 years ago
4 0

Answer:

Cashier

Step-by-step explanation:

An elementary school teacher has to go to college, a college professor has to have a college degree, and although accountants are always required to go to college most places hire accountants that have gone to school.

marin [14]3 years ago
4 0

Answer:

C. Cashier

Step-by-step explanation:

Retail cashiers require no formal training.

To be an elementary teacher, you must have at least a Bachelor's degree.

To be a college professor, you must have at least a Master's degree.

To be an accountant, you must have at least a Bachelor's degree.

You might be interested in
What is five to the -7th power times five to the <br> 12 power
leva [86]
5^-7 * 5^12

Because the base is the same, add the exponents.
5^ (-7+12)= 5^5

Final answer: 5^5, or 3125
5 0
3 years ago
Read 2 more answers
Graph the function. Find the y-intercept and state the domain and range. Y = 3(2^x) - 4
Thepotemich [5.8K]

Answer:

the first one

Step-by-step explanation:

4 0
3 years ago
-5(t + 6) + 7t = 100
Mila [183]
Use distribution
-5t - 30 + 7t = 100
Combine like terms
2t - 30 = 100
Add 30 to both sides
2t = 130, t = 65
Solution: t = 65
3 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
Please help ASAP Meteorologists are planning the location of a new weather station to cover Santa Cruz, Morgan Hill, and Gilroy,
Likurg_2 [28]

Answer:

(-1, -2.5)

Step-by-step explanation:

(3, 0) is the midpoint between (2, 2) and (4, -2)

(-5, -5) (3, 0) the midpoint between these two points is

(-5 + 3) / 2 = -1, (-5 + 0) / 2 = -2.5

4 0
3 years ago
Other questions:
  • The physician orders 125 mg of a medication. on hand is a bottle that reads 500 mg/5ml. How much should the medical assistant ad
    13·1 answer
  • Sharon's house, the library, and Lisa's house are all on the same straight road. Sharon has to ride her bike 1 3/5 miles to get
    14·1 answer
  • Find the area of a rectangle if the perimeter is equal to 38 in and the length is 10.
    14·1 answer
  • Write an equation of the line with the slope of -7 going through the point (6,-7)
    13·1 answer
  • Convert 12,5% to a decimal fraction.
    15·1 answer
  • A.Find the slope of the graph using the points (1,2) and (5,10). Remember that the slope is the constant rate of change.
    9·1 answer
  • -2(3x-4)=4(5x-11) Solve for x
    7·2 answers
  • What is scale factor of the two triangles ?
    11·2 answers
  • Right answer will get brainlist.
    8·1 answer
  • seven people arrive to dinner, but the circular table only seats six. if two seatings such that one is a rotation of the other a
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!