Answer:
wavelength.
Explanation:
One complete expression of a waveform beginning at a certain point, progressing through the zero line to the wave’s highest (crest) and lowest (trough) points, and returning to the same value as the starting point is called a is called wavelength. Its can be also defined as the distance between two successive crests or trough points in wave form.
Here is the correct answer of the given question above. When a person steps forward out of a small boat onto a dock, the boat recoils backward in the water and this occurs because the total momentum of the system is conserved. Hope this helps.
To find the accurate measurement of small cars, the teacher asks students to make all the measurements in centimeters.
Centimeters Measurements:
- A centimeter is a metric unit of measurement used for measuring the length of an object, It is written as cm
- Centimeter is one hundredth of a meter, 1 meter is 0.01 cm.
Inches measurements:
- An inch can be defined as a unit of length in the customary system of measurement. Length in inches is either represented by in or ''.
- 1 meter is equal to 39.37 inches
here, the cars are small objects.
The number of centimeters is always bigger,
because a centimeter unit is smaller than an inch unit, and it takes more of them when we are measuring.
Hence,
To find the accurate measurement of small cars, the teacher asks students to make all the measurements in centimeters.
Learn more about accurate measurement here:
<u>brainly.com/question/4119127</u>
<u />
#SPJ4
Answer:
moment of inertia is 2.72 kg m²
Explanation:
given data
mass m = 10kg
height h = 4.5 m
radius r = 0.5 m
speed v = 6.5 m/s
to find out
moment of inertia
solution
we apply here conservation of energy
that is
mgh = 1/2 ×mv² + 1/2 × Iω²
here I is moment of inertia we find and
we know ω = Velocity / radius = 6.5 / 0.5 = 13
and g = 9.8
so put here all these value
10 (9.8) 4.5 = 1/2 ×(10)(6.5)² + 1/2 × I(13)²
441 = 211.25 + 1/2 × I( 169 )
I = 2.72
so moment of inertia is 2.72 kg m²
Answer:
a. 21.68 rad/s b. 30.78 m/s c. 897 rev/min² d. 1085 revolutions
Explanation:
a. Its angular speed in radians per second ω = angular speed in rev/min × 2π/60 = 207 rev/min × 2π/60 = 21.68 rad/s
b. The linear speed of a point on the flywheel is gotten from v = rω where r = radius of flywheel = 1.42 m
So, v = rω = 1.42 m × 21.68 rad/s = 30.78 m/s
c. Using α = (ω₁ - ω)/t where α = angular acceleration of flywheel, ω = initial angular speed of wheel in rev/min = 21.68 rad/s = 207 rev/min, ω₁ = final angular speed of wheel in rev/min = 1410 rev/min = 147.65 rad/s, t = time in minutes = 80.5/60 min = 1.342 min
α = (ω₁ - ω)/t
= (1410 - 207)/(80.5/60)
= 60(1410 - 207)/80.5
= 60(1203)80.5
= 896.65 rev/min² ≅ 897 rev/min²
d. Using θ = ωt + 1/2αt²
where θ = number of revolutions of flywheel. Substituting the values of the variables from above, ω = 207 rev/min, α = 896.65 rev/min² and t = 80.5/60 min = 1.342 min
θ = ωt + 1/2αt²
= 207 × 1.342 + 1/2 × 896.65 × 1.342²
= 277.725 + 807.417
= 1085.14 revolutions ≅ 1085 revolutions