Answer:
Option (3)
Explanation:
Formula used to calculate acceleration is,
F = ma
Where F = force exerted on a mass
m = mass
a = acceleration due to force exerted on the mass
Option (1),
When F = 100 N and m = 100 kg
100 = 100a
a = 1 m per sec²
Option (2)
For F = 1 N and m = 100 kg
1 = 100a
a = 
a = 0.01 m per sec²
Option (3)
For F = 100 N and m = 1 kg
100 = 1(a)
a = 100 m per sec²
Option (4)
For F = 1 N and m = 1 kg
1 = 1(a)
a = 1 m per sec²
Therefore. acceleration in Option (3) is the maximum.
In order to answer this, we will set up a simple ratio as such:
1 calorie = 4.184 joules
1 kilocalorie = 1000 calories
1 kilocalorie = 4,184 joules
250 kilocalories = x joules
Cross multiplying the second and third equations, we get:
x joules = 4,184 * 250
250 kilocalories are equivalent to 1,046 kJ
Answer:
No, they will not change.
Explanation:
Answer:
71 rpm
Explanation:
Given that:
Angular momentum (L) = 0.26
Diameter = 25cm = 0.25 cm
Radius, r = (d/2) = 0.125m
Mass = 5.6 kg
Moment of inertia (I) = 2mr² / 5
I = (2 * 5.6 * 0.125^2) / 5
= 0.175
= 0.175 / 5
= 0.035 kgm²
Angular speed (w) ;
w = L / I
w = 0.26 / 0.035
= 7.4285714
= 7.429 rad/s
w = (7.429 * 60/2π)
w = 445.74 / 2π rpm
w = 70.941724
Angular speed = 70.94 rpm
= 71 rpm