Answer:
Explanation:
charge, q = 2e = 2 x 1.6 x 10^-19 C = 3.2 x 10^-19 C
mass, m = 4 u = 4 x 1.661 x 10^-27 kg = 6.644 x 10^-27 kg
Radius, r = 4.5 cm = 0.045 m
Magnetic field, B = 1.20 T
(a) Let the speed is v.


v = 2.6 x 10^6 m/s
(b) Let T be the period of revolution


T = 1.09 x 10^-7 s
(c) The formula for the kinetic energy is


K = 2.25 x 10^-14 J
(d) Let the potential difference is V.
K = qV


V = 70312.5 V
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, the formula to be used here is
ω = 2π/T
Where ω is the angular frequency (in rad/s)
T is the period - the time taken for Block A to complete one oscillation and return to it's original position.
To solve for this period T, the formula below should be used
T = 2π√m/k
where m is the mass of the object (Block A) and k is the spring constant (281 J/m²)
Answer:

Explanation:
Given:
- mass of rocket,

- time of observation,

- mass lost by the rocket by expulsion of air,

- velocity of air,

<u>Now the momentum of air will be equal to the momentum of rocket in the opposite direction: </u>(Using the theory of elastic collision)



Answer:
a) wet marble , dry marble, newspaper, and towel