Given:
The point
divides the line segment joining points
and
.
To find:
The ratio in which he point P divides the segment AB.
Solution:
Section formula: If a point divides a segment in m:n, then the coordinates of that point are,

Let point P divides the segment AB in m:n. Then by using the section formula, we get


On comparing both sides, we get


Multiply both sides by 4.




It can be written as


Therefore, the point P divides the line segment AB in 1:5.
Answer:
y = 1/4x + 1
Step-by-step explanation:
y = 1/4 x + b
take the point and plug it into the formula to solve for b
2 = 1/4 (4) + b
2 = 1 + b
b = 1
<h2>Answer:</h2><h3>W = 5</h3><h3>Step-by-step explanation:</h3><h3>Simplify the brackets. </h3><h3>-2x^2 + wx - 4 - x^2 - 5x - 6 = -3x^2 - 10</h3><h3>Then simplify (-2x^2 + wx - 4 - x^2 - 5x - 6) to </h3><h3>( -3x^2 + wx - 10 - 5x)</h3><h3>This will give you 3x^2 + wx - 10 - 5x = -3x^2 - 10. </h3><h3>Now you need to cancel out -3x^2 on both sides. </h3><h3>wx - 10 - 5x = -10</h3><h3>Then cancel out -10 from both sides. </h3><h3>wx - 5x = 0</h3><h3>Now factor out the common term. (x) </h3><h3>w - 5 = 0.</h3><h3>giving you the answer w = 5. </h3><h3 /><h3 /><h3>welcome. *yeets*</h3>
Answer:
y=(x-5)^2 - 6
Step-by-step explanation:
Subtracting the 5 to the x moves the parabola 5 units to the right. Putting the -6 at the end moves the parabola down 6 units.
Answer:
4
Step-by-step explanation:
- 16÷4=4 12÷3=4 meaning is.the lowest common multiple