Taylor series is 
To find the Taylor series for f(x) = ln(x) centering at 9, we need to observe the pattern for the first four derivatives of f(x). From there, we can create a general equation for f(n). Starting with f(x), we have
f(x) = ln(x)

.
.
.
Since we need to have it centered at 9, we must take the value of f(9), and so on.
f(9) = ln(9)

.
.
.
Following the pattern, we can see that for
,
This applies for n ≥ 1, Expressing f(x) in summation, we have

Combining ln2 with the rest of series, we have

Taylor series is 
Find out more information about taylor series here
brainly.com/question/13057266
#SPJ4
last one is the right answer
Answer:
9 tiles needed to fill
Step-by-step explanation:
16 - 7
I believe the equation is
![4 \sqrt[4]{2x} + 6 \sqrt[4]{2x}](https://tex.z-dn.net/?f=4%20%5Csqrt%5B4%5D%7B2x%7D%20%2B%206%20%20%5Csqrt%5B4%5D%7B2x%7D%20)
In this case, you would simplify it by adding them together.
![4 \sqrt[4]{2x} + 6 \sqrt[4]{2x}](https://tex.z-dn.net/?f=4%20%5Csqrt%5B4%5D%7B2x%7D%20%2B%206%20%20%5Csqrt%5B4%5D%7B2x%7D%20)
=
![10 \sqrt[4]{2x}](https://tex.z-dn.net/?f=10%20%20%5Csqrt%5B4%5D%7B2x%7D%20)
And can even be changed to an exponential equation: