At some point, the exponential function always exceeds a polynomial function.
Let's take any edge length l. The diagonal has length

. In our case it's
4x^2-3x+4y^2+4z^2=0
here we shall proceed as follows:
x=ρcosθsinφ
y=ρsinθsinφ
z=ρcosφ
thus
4x^2-3x+4y^2+4z^2=
4(ρcosθsinφ)^2-3(ρcosθsinφ)+4(ρsinθsinφ)^2+4(ρcosφ)
but
ρ=1/4cosθsinφ
hence we shall have:
4x^2-3x+4y^2+4z^2
=1/4cosθsinθ(cosθ(4-3sinφ))+4sin^2(φ)