Answer and explanation:
There are six main trigonometric ratios, namely: sine, cosine, tangent, cosecant, secant, cotangent.
Those ratios relate two sides of a right triangle and one angle.
Assume the following features and measures of a right triangle ABC
- right angle: B, measure β
- hypotenuse (opposite to angle B): length b
- angle C: measure γ
- vertical leg (opposite to angle C): length c
- horizontal leg (opposite to angle A): length a
- angle A: measure α
Then, the trigonometric ratios are:
- sine (α) = opposite leg / hypotenuse = a / b
- cosine (α) = adjacent leg / hypotenuse = c / b
- tangent (α) = opposite leg / adjacent leg = a / c
- cosecant (α) = 1 / sine (α) = b / a
- secant (α) = 1 / cosine (α) = b / c
- cotangent (α) = 1 / tangent (α) = c / b
Then, if you know one angle (other than the right one) of a right triangle, and any of the sides you can determine any of the other sides.
For instance, assume an angle to be 30º, and the lenght of the hypotenuse to measure 5 units.
- sine (30º) = opposite leg / 5 ⇒ opposite leg = 5 × sine (30º) = 2.5
- cosine (30º) = adjacent leg / 5 ⇒ adjacent leg = 5 × cosine (30º) = 4.3
Thus, you have solved for the two unknown sides of the triangle. The three sides are 2.5, 4.3, and 5.
Answer:
how many balloons did she get
Step-by-step explanation:
Answer: 
Step-by-step explanation:
You can do long division, which is very very hard to show with typing on a keyboard. You essentially want to divide the leading coefficient for each term. Ill try my best to explain it.
Do
. Write 2x^2 down. Now multiply (x - 3) by it. Then subtract it from the trinomial.

Now do
. Write that down next to your 2x^2. Multiply 3x by (x - 3) to get:

Your final step is to do
. Write this -2 next to your other two parts
Multiply -2 by (x - 3) to get:

Our remainder is 0 so that means (x - 3) goes into that trinomial exactly:
times