Answer:
<u>The owner's total revenue would be</u><u> $204</u><u> if he charged $6 for each paddle boat rental.</u>
Step-by-step explanation:
The owner has a total of 40 paddle boats and he can rent out all of them if he charges $3 per paddle boat. For each extra dollar, the number of paddle boats will decrease by 2. So, if he charges $6 (3 extra dollars) for each rental he can rent out:
40 - (3 x 2)
= 40 - 6
= 34 paddle boats.
The total revenue can be calculated by multiplying the number of paddle boats rented by the rent price per paddle boat.
Total Revenue = 34 x 6
= $204
<u>The owner's total revenue would be</u><u> $204</u><u> if he charged $6 for each paddle boat rental.</u>
Answer:
Step-by-step explanation:
Garrett achieves a field goal is independent of each kick. Hence X no of kicks is binomial with p = 0.83, and q =0.17
No of trials 3
Hence X can take values as 0 ,1,2,3 and
![P(X=r) = 4Cr(0.83)^r (0.17)^{4-r}](https://tex.z-dn.net/?f=P%28X%3Dr%29%20%3D%204Cr%280.83%29%5Er%20%280.17%29%5E%7B4-r%7D)
, r=0,1,2,3
Using the above we obtain prob distribution as
X 0 1 2 3
P(X) 0.0049 0.0720 0.3513 0.5718
P(X>=2) =P(X=2,3,4) =0.9231
-----------------------------------------
2) Z value for company A =![\frac{260-272}{5.4} =-2.22](https://tex.z-dn.net/?f=%5Cfrac%7B260-272%7D%7B5.4%7D%20%3D-2.22)
Z value for company B = ![(260-249)/3.8 =2.89](https://tex.z-dn.net/?f=%28260-249%29%2F3.8%20%3D2.89)
From z value probablility is more for company A as
P(Z>-2.22) >P(Z>2.89)
cos θ =
, sin θ =
, cot θ = 4/7, sec θ =
, cosec θ = ![\frac{-\sqrt{65} }{7}](https://tex.z-dn.net/?f=%5Cfrac%7B-%5Csqrt%7B65%7D%20%7D%7B7%7D)
<h3>What are trigonometric ratios?</h3>
Trigonometric Ratios are values of all the trigonometric functions based on the value of the ratio of sides in a right-angled triangle.
Sin θ: Opposite Side to θ/Hypotenuse
Tan θ: Opposite Side/Adjacent Side & Sin θ/Cos
Cos θ: Adjacent Side to θ/Hypotenuse
Sec θ: Hypotenuse/Adjacent Side & 1/cos θ
Analysis:
tan θ = opposite/adjacent = 7/4
opposite = 7, adjacent = 4.
we now look for the hypotenuse of the right angled triangle
hypotenuse =
=
= ![\sqrt{65}](https://tex.z-dn.net/?f=%5Csqrt%7B65%7D)
sin θ = opposite/ hyp = ![\frac{7}{\sqrt{65} }](https://tex.z-dn.net/?f=%5Cfrac%7B7%7D%7B%5Csqrt%7B65%7D%20%7D)
Rationalize,
x
= ![\frac{7\sqrt{65} }{65}](https://tex.z-dn.net/?f=%5Cfrac%7B7%5Csqrt%7B65%7D%20%7D%7B65%7D)
But θ is in the third quadrant(180 - 270) and in the third quadrant only tan and cot are positive others are negative.
Therefore, sin θ = - ![\frac{7\sqrt{65} }{65}](https://tex.z-dn.net/?f=%5Cfrac%7B7%5Csqrt%7B65%7D%20%7D%7B65%7D)
cos θ = adj/hyp = ![\frac{4}{\sqrt{65} }](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B%5Csqrt%7B65%7D%20%7D)
By rationalizing and knowing that cos θ is negative, cos θ = -![\frac{-4\sqrt{65} }{65}](https://tex.z-dn.net/?f=%5Cfrac%7B-4%5Csqrt%7B65%7D%20%7D%7B65%7D)
cot θ = 1/tan θ = 1/7/4 = 4/7
sec θ = 1/cos θ = 1/
= -![\frac{-\sqrt{65} }{4}](https://tex.z-dn.net/?f=%5Cfrac%7B-%5Csqrt%7B65%7D%20%7D%7B4%7D)
cosec θ = 1/sin θ = 1/
= ![\frac{-\sqrt{65} }{7}](https://tex.z-dn.net/?f=%5Cfrac%7B-%5Csqrt%7B65%7D%20%7D%7B7%7D)
Learn more about trigonometric ratios: brainly.com/question/24349828
#SPJ1
Solution :
a). The level curves of the function :
![$C(x,y) = e^{-(x^2+2y^2)/10^4}$](https://tex.z-dn.net/?f=%24C%28x%2Cy%29%20%3D%20e%5E%7B-%28x%5E2%2B2y%5E2%29%2F10%5E4%7D%24)
are actually the curves
![$e^{-(x^2+2y^2)/10^4}=k$](https://tex.z-dn.net/?f=%24e%5E%7B-%28x%5E2%2B2y%5E2%29%2F10%5E4%7D%3Dk%24)
where k is a positive constant.
The equation is equivalent to
![$x^2+2y^2=K$](https://tex.z-dn.net/?f=%24x%5E2%2B2y%5E2%3DK%24)
![$\Rightarrow \frac{x^2}{(\sqrt K)^2}+\frac{y^2}{(\sqrt {K/2})^2}=1, \text{ where}\ K = -10^4 \ln k$](https://tex.z-dn.net/?f=%24%5CRightarrow%20%5Cfrac%7Bx%5E2%7D%7B%28%5Csqrt%20K%29%5E2%7D%2B%5Cfrac%7By%5E2%7D%7B%28%5Csqrt%20%7BK%2F2%7D%29%5E2%7D%3D1%2C%20%5Ctext%7B%20where%7D%5C%20K%20%3D%20-10%5E4%20%5Cln%20k%24)
which is a family of ellipses.
We sketch the level curves for K =1,2,3 and 4.
If the shark always swim in the direction of maximum increase of blood concentration, its direction at any point would coincide with the gradient vector.
Then we know the shark's path is perpendicular to the level curves it intersects.
b). We have :
![$\triangledown C= \frac{\partial C}{\partial x}i+\frac{\partial C}{\partial y}j$](https://tex.z-dn.net/?f=%24%5Ctriangledown%20C%3D%20%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20x%7Di%2B%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20y%7Dj%24)
and
points in the direction of most rapid increase in concentration, which means
is tangent to the most rapid increase curve.
is a parametrization of the most
, then
is a tangent to the curve.
So then we have that ![$\frac{dr}{dt}=\lambda \triangledown C$](https://tex.z-dn.net/?f=%24%5Cfrac%7Bdr%7D%7Bdt%7D%3D%5Clambda%20%5Ctriangledown%20C%24)
![$\Rightarrow \frac{dx}{dt}=-\frac{2\lambda x}{10^4}e^{-(x^2+2y^2)/10^4}, \frac{dy}{dt}=-\frac{4\lambda y}{10^4}e^{-(x^2+2y^2)/10^4} $](https://tex.z-dn.net/?f=%24%5CRightarrow%20%5Cfrac%7Bdx%7D%7Bdt%7D%3D-%5Cfrac%7B2%5Clambda%20x%7D%7B10%5E4%7De%5E%7B-%28x%5E2%2B2y%5E2%29%2F10%5E4%7D%2C%20%5Cfrac%7Bdy%7D%7Bdt%7D%3D-%5Cfrac%7B4%5Clambda%20y%7D%7B10%5E4%7De%5E%7B-%28x%5E2%2B2y%5E2%29%2F10%5E4%7D%20%24)
∴ ![$\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{2y}{x}$](https://tex.z-dn.net/?f=%24%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7Bdy%2Fdt%7D%7Bdx%2Fdt%7D%3D%5Cfrac%7B2y%7D%7Bx%7D%24)
Using separation of variables,
![$\frac{dy}{y}=2\frac{dx}{x}$](https://tex.z-dn.net/?f=%24%5Cfrac%7Bdy%7D%7By%7D%3D2%5Cfrac%7Bdx%7D%7Bx%7D%24)
![$\int\frac{dy}{y}=2\int \frac{dx}{x}$](https://tex.z-dn.net/?f=%24%5Cint%5Cfrac%7Bdy%7D%7By%7D%3D2%5Cint%20%5Cfrac%7Bdx%7D%7Bx%7D%24)
![$\ln y=2 \ln x$](https://tex.z-dn.net/?f=%24%5Cln%20y%3D2%20%5Cln%20x%24)
⇒ y = kx^2 for some constant k
but we know that ![$y(x_0)=y_0$](https://tex.z-dn.net/?f=%24y%28x_0%29%3Dy_0%24)
![$\Rightarrow kx_0^2=y_0$](https://tex.z-dn.net/?f=%24%5CRightarrow%20kx_0%5E2%3Dy_0%24)
![$\Rightarrow k =\frac{y_0}{x_0^2}$](https://tex.z-dn.net/?f=%24%5CRightarrow%20k%20%3D%5Cfrac%7By_0%7D%7Bx_0%5E2%7D%24)
∴ The path of the shark will follow is along the parabola
![$y=\frac{y_0}{x_0^2}x^2$](https://tex.z-dn.net/?f=%24y%3D%5Cfrac%7By_0%7D%7Bx_0%5E2%7Dx%5E2%24)
![$y=y_0\left(\frac{x}{x_0}\right)^2$](https://tex.z-dn.net/?f=%24y%3Dy_0%5Cleft%28%5Cfrac%7Bx%7D%7Bx_0%7D%5Cright%29%5E2%24)
Answer:
2.82 seconds (3 sf)
Step-by-step explanation:
s = ut + 0.5at²
6 = -95(sin25)t + 0.5(32)t²
16t² - 40.14873487t - 6 = 0
t = 2.818501699, -0.1419193751
t is time so can't be negative.
Therefore, t = 2.82s (3 sf)