Use a calculator to find the cube root of positive or negative numbers. Given a number x<span>, the cube root of </span>x<span> is a number </span>a<span> such that </span><span>a3 = x</span><span>. If </span>x<span> positive </span>a<span> will be positive, if </span>x<span> is negative </span>a<span> will be negative. Cube roots is a specialized form of our common </span>radicals calculator<span>.
</span>Example Cube Roots:<span>The 3rd root of 64, or 64 radical 3, or the cube root of 64 is written as \( \sqrt[3]{64} = 4 \).The 3rd root of -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span><span>
</span>This was not copied from a website or someone else. This was from my last year report.
<span>
f -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span>
Answer:
The probability is 0.3576
Step-by-step explanation:
The probability for the ball to fall into the green ball in one roll is 2/1919+2 = 2/40 = 1/20. The probability for the ball to roll into other color is, therefore, 19/20.
For 25 rolls, the probability for the ball to never fall into the green color is obteined by powering 19/20 25 times, hence it is 19/20^25 = 0.2773
To obtain the probability of the ball to fall once into the green color, we need to multiply 1/20 by 19/20 powered 24 times, and then multiply by 25 (this corresponds on the total possible positions for the green roll). The result is 1/20* (19/20)^24 *25 = 0.3649
The exercise is asking us the probability for the ball to fall into the green color at least twice. We can calculate it by substracting from 1 the probability of the complementary event: the event in which the ball falls only once or 0 times. That probability is obtained from summing the disjoint events: the probability for the ball falling once and the probability of the ball never falling. We alredy computed those probabilities.
As a result. The probability that the ball falls into the green slot at least twice is 1- 0.2773-0.3629 = 0.3576
Answer:
Elimination
Step-by-step explanation:
You would not do substitution since it would not work so you do elimination since the 4y and -4y eliminate then you just solve for it.