Factor out the 4 in both equations
8a^2-20^2=(2^2 times a^2 times 2)-(2^2 times 5)
therefor it is also equal to
(2a)^2 times 2-(2^2 times 5)
we can force it into a difference of 2 perfect squares which is a^2-b^2=(a-b)(a+b)
(2a√2)^2-(2√5)^2=((2a√2)-(2√5))((2a√2)+(2√5))
Option B: The area of the trapezoid is 157.5 m²
Explanation:
We need to determine the area of the trapezoid.
The area of the trapezoid can be determined by the formula,

where h is the height, a and b are the base of the trapezoid.
From the figure, it is obvious that
,
and 
Substituting these values in the formula, we have,

Simplifying the terms, we have,

Multiplying the terms in the numerator, we have,

Dividing, we get,

Thus, the area of the trapezoid is 157.5 m²
Hence, Option B is the correct answer.
Answer:
Equation simplifed= 8x^2-14x-15
Step-by-step explanation:
Answer:
None
Step-by-step explanation:
They are the same number