Answer:
H₂: 0.48, N₂: 0.43; Ar: 0.09
Explanation:
First of all, sum all the pressures to know the total pressure in the mixture.
434 Torr + 389.9 Torr + 77.9 Torr = 901.8 Torr
Mole fraction = Pressure gas / Total Pressure
Mole Fraction H₂: 434 Torr /901.8 Torr = 0.48
Mole Fraction N₂: 389.9 /901.8 Torr =0.43
Mole Fraction Ar: 77.9 /901.8 Torr = 0.09
Remember: <u>SUM OF MOLE FRACTION = 1</u>
citric acid is in most foods
Answer:
See the image 1
Explanation:
If you look carefully at the progress of the SN2 reaction, you will realize something very important about the outcome. The nucleophile, being an electron-rich species, must attack the electrophilic carbon from the back side relative to the location of the leaving group. Approach from the front side simply doesn't work: the leaving group - which is also an electron-rich group - blocks the way. (see image 2)
The result of this backside attack is that the stereochemical configuration at the central carbon inverts as the reaction proceeds. In a sense, the molecule is turned inside out. At the transition state, the electrophilic carbon and the three 'R' substituents all lie on the same plane. (see image 3)
What this means is that SN2 reactions whether enzyme catalyzed or not, are inherently stereoselective: when the substitution takes place at a stereocenter, we can confidently predict the stereochemical configuration of the product.
Answer:
The value is 
Explanation:
From the question we are told that
The bond length is
The bond dipole moment is 
Generally the dipole moment is mathematically represented as

Here Q is the partial negative charge on the bromine atom
So

=> 
=> 
Generally
1 electronic charge(e) is equivalent to 
So x electronic charge(e) is equivalent to 
=> 
=> 