Answer:
yvyctCTzrr7f9yf9yc9yzr8z8rx5x5c6f
fortnite redeem code
6,160.506
Explanation:
That is, the molar mass of a substance is the mass (in grams per mole) of 6.022 × 1023 atoms, molecules, or formula units of that substance. In each case, the number of grams in 1 mol is the same as the number of atomic mass units that describe the atomic mass, the molecular mass, or the formula mass, respectively.
<span>It is higher than the pressure on the outside of the bottle.</span>
Answer:
The work done and heat absorbed are both -8,1 kJ
Explanation:
The work done in an isobaric process is defined as:
W = -P (Vf - Vi)
Where P is pressure ( 10 atm)
Vf = 10 L
Vi = 2 L
Thus, <em>W = -80 atm×L ≡ -8,1 kJ</em>
This is the work done in expansion of the gas. As the gas remains at the same temperature, there is no change in internal energy doing that all work was absorbed as heat.
I hope it helps!
The answer to this question would be A. Energy is released.
When a chemical bond is a form, the bond will either suck up energy or produce energy. So, to be precise the energy is not always released but also can be absorbed. In this case, the energy released number will be a minus.
Options B and C is definitely wrong since the bond is formed by an electron, it won't affects neutron/proton.
Option D might be true since the product is made of 2 or more atoms then it would seem larger. But the size of the actual atom won't be increased.