Answer:
<u>Figure A</u>
Step-by-step explanation:
See the attached figure which represents the given options
We are to select the correct pair of triangles that can be mapped to each other using a translation and a rotation about point A.
As shown: point A will map to point L, point R will map to point P and point Q will map to point K.
we will check the options:
<u>Figure A</u>: the triangle ARQ and LPK can be mapped to each other using a translation and a rotation about point A.
<u>Figure B: </u> the triangle ARQ and LPK can be mapped to each other using a translation and a reflection about the line RA.
<u>Figure C:</u> the triangle ARQ and LPK can be mapped to each other using a translation and a reflection about the line QA.
<u>Figure D:</u> the triangle ARQ and LPK can be mapped to each other using a rotation about point A.
So, the answer is figure A
<u>The triangle pairs of figure A can be mapped to each other using a translation and a rotation about point A.</u>
C the bank will exchange his new car for a old one
Answer:
a) 13 m/s
b) (15 + h) m/s
c) 15 m/s
Step-by-step explanation:
if the location is
y=x²+3*x
then the average velocity from 3 to 7 is
Δy/Δx=[y(7)-y(3)]/(7-3)=[7²+3*7- (3²+3*3)]/4= 13 m/s
then the average velocity from x=6 to to x=6+h
Δy/Δx=[y(6+h)-y(6)]/(6+h-6)=[(6+h)²+3*(6+h)- (6²+3*6)]/h= (2*6*h+3*h+h²)/h=2*6+3= (15 + h) m/s
the instantaneous velocity can be found taking the limit of Δy/Δx when h→0. Then
when h→0 , limit Δy/Δx= (15 + h) m/s = 15 m/s
then v= 15 m/s
also can be found taking the derivative of y in x=6
v=dy/dx=2*x+3
for x=6
v=dy/dx=2*6+3 = 12+3=15 m/s
Answer:
A
Step-by-step explanation:
Answer:
a^(3)+3a^(2)-4a+3
Step-by-step explanation: