Answer:
Step-by-step explanation:
An eigenvalue of n × n is a function of a scalar
considering that there is a solution (i.e. nontrivial) to an eigenvector x of Ax =
Suppose the matrix ![A = \left[\begin{array}{cc}-1&-1\\2&1\\ \end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%26-1%5C%5C2%261%5C%5C%20%5Cend%7Barray%7D%5Cright%5D)
Thus, the equation of the determinant (A -
1) = 0
This implies that:
![\left[\begin{array}{cc}-1-\lambda &-1\\2&1- \lambda\\ \end{array}\right] =0](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1-%5Clambda%20%26-1%5C%5C2%261-%20%5Clambda%5C%5C%20%5Cend%7Barray%7D%5Cright%5D%20%3D0)



Hence, the eigenvalues of the equation are 
Also, the eigenvalues can be said to be complex numbers.
The answer to that question is
30
Answer:
There is not enough information
Step-by-step explanation:
9514 1404 393
Answer:
13 nickels
Step-by-step explanation:
Let n represent the number of nickels Bob has. Then 18-n is the number of dimes, and the total value (in cents) is ...
5n +10(18-n) = 115
-5n +180 = 115 . . . simplify
65 = 5n . . . . . add 5n-115
13 = n . . . . . . . divide by 5
Bob has 13 nickels.