1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margarita [4]
3 years ago
12

Quadrilateral QRST is a square. If the measure of angle RQT is 3x - 6. Find the value of x.

Mathematics
1 answer:
trapecia [35]3 years ago
3 0

Given that quadrilateral QRST is a square.

Each angle of a square is of 90 degrees.

Angle <RQT is also an angle of 90 degrees.

We also given angle RQT = 3x - 6.

So, we can setup an equation as 3x-6 =90.

Now, we need to solve the equation for x.

6 is being subtracted from left side.

We always apply reverse operation. Reverse operation of subtraction is addition.

So, adding 6 on both sides of the equation, we get

3x-6+6 =90+6.

3x = 96.

3 is being multipied with x, in order to remove that 3, we need to apply reverse operation of multiplication.

So, dividing both sides by 3.

\frac{3x}{3} = \frac{96}{3}

x=32 (final answer).

You might be interested in
Please help me solve this problem ASAP
DiKsa [7]

\bold{\huge{\blue{\underline{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • <u>The </u><u>right </u><u>angled </u><u>below </u><u>is </u><u>formed </u><u>by </u><u>3</u><u> </u><u>squares </u><u>A</u><u>, </u><u> </u><u>B </u><u>and </u><u>C</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>B</u><u> </u><u>has </u><u>an </u><u>area </u><u>of </u><u>1</u><u>4</u><u>4</u><u> </u><u>inches </u><u>²</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>C </u><u>has </u><u>an </u><u>of </u><u>1</u><u>6</u><u>9</u><u> </u><u>inches </u><u>²</u>

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u><u>A</u><u>? </u>

<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>

The right angled triangle is formed by 3 squares

<u>We </u><u>have</u><u>, </u>

  • Area of square B is 144 inches²
  • Area of square C is 169 inches²

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{ Area \: of \: square =  Side × Side }

Let the side of square B be x

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 144 =  x × x }

\sf{ 144 =  x² }

\sf{ x = √144}

\bold{\red{ x = 12\: inches }}

Thus, The dimension of square B is 12 inches

<h3><u>Now, </u></h3>

Area of square C = 169 inches

Let the side of square C be y

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 169 =  y × y }

\sf{ 169 =  y² }

\sf{ y = √169}

\bold{\green{ y = 13\: inches }}

Thus, The dimension of square C is 13 inches.

<h3><u>Now, </u></h3>

It is mentioned in the question that, the right angled triangle is formed by 3 squares

The dimensions of square be is x and y

Let the dimensions of square A be z

<h3><u>Therefore</u><u>, </u><u>By </u><u>using </u><u>Pythagoras </u><u>theorem</u><u>, </u></h3>

  • <u>The </u><u>sum </u><u>of </u><u>squares </u><u>of </u><u>base </u><u>and </u><u>perpendicular </u><u>height </u><u>equal </u><u>to </u><u>the </u><u>square </u><u>of </u><u>hypotenuse </u>

<u>That </u><u>is</u><u>, </u>

\bold{\pink{ (Perpendicular)² + (Base)² = (Hypotenuse)² }}

<u>Here</u><u>, </u>

  • Base = x = 12 inches
  • Perpendicular = z
  • Hypotenuse = y = 13 inches

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ (z)² + (x)² = (y)² }

\sf{ (z)² + (12)² = (169)² }

\sf{ (z)² + 144 = 169}

\sf{ (z)² = 169 - 144 }

\sf{ (z)² = 25}

\bold{\blue{ z = 5 }}

Thus, The dimensions of square A is 5 inches

<h3><u>Therefore</u><u>,</u></h3>

Area of square

\sf{ = Side × Side }

\sf{ = 5 × 5  }

\bold{\orange{ = 25\: inches }}

Hence, The area of square A is 25 inches.

6 0
2 years ago
Solve the initial value problem. dy/dt = 1 + 6/t , t &gt; 0, y = 8 when t = 1
nordsb [41]
\displaystyle\frac{dy}{dt} = 1 + \frac{6}{t}\ \Rightarrow\ dy = \left( 1 + \frac{6}{t}\right) dt\ \Rightarrow\int 1\, dy = \int \left( 1 + \frac{6}{t}\right) dt \ \Rightarrow \\ \\&#10;y = t + 6\ln|t| + C. \text{ But $t\ \textgreater \ 0$ so }y = t + 6\ln t + C. \\ \\ &#10;y(1) = 8\ \Rightarrow\ 8 = 1 + 6 \ln 1 + C \ \Rightarrow\ C = 7 \text{ so } \\ \\&#10;y(t) = t + 6\ln t + 7
5 0
3 years ago
How much interest is $15. yr in percent form
rewona [7]
1.15 I think in an equation form I’m not sure though
7 0
2 years ago
How would i do this 243.79 in expanded form? <br><br> Please answer my question.
d1i1m1o1n [39]

Answer:

200+40+3+0.7+0.09

Step-by-step explanation:

6 0
3 years ago
There are 4 times as many used cars in the car dealer ship lot is there a new car there are 120 cars total in the dealership lik
guapka [62]
There are 30 new cars and 90 used cars in the dealership.

120/4=30 new
120-30=90 used
6 0
3 years ago
Read 2 more answers
Other questions:
  • Need help!!! I dont get it
    11·1 answer
  • The points A (4, 0) and B (3, 7) are two vertices of right triangle ABC . The hypotenuse of the triangle is AB⎯⎯⎯⎯⎯ . Point C is
    7·2 answers
  • X/7 = 3/2 a/6 = 3/10
    5·1 answer
  • For a function p(x), as |x|—&gt; infinity then p(x)—&gt; 3. Which of the following graphs could be p(x)?
    5·1 answer
  • 7x + 3y = m
    8·2 answers
  • A random card is drawn from a full deck of 52 cards. What is the probability that a card drawn is one of the 4 queens in the dec
    8·1 answer
  • The newly elected president needs to decide the remaining 7 spots available in the cabinet he/she is appointing. If there are 13
    10·1 answer
  • Follow this link to view juan’s work. critique juan’s work by justifying correct solutions and by explaining any errors he made.
    12·1 answer
  • PLEASE HELP!! 20 POINTS!<br> - ✓ 81+ ✓–49 + ✓ 25+ ✓-1
    14·2 answers
  • Thę grades on a math midterm at Springer are roughly symmetric with u = 72 and 0 = 4.5.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!