<span>30.0 ml of 0.15 m K2CrO4 solution will have more potassium ions.
Let's see the relative number of potassium ions for each solution. Since all the measurements are the same, the real difference is the K2CrO4 will only have 2 potassium ions per molecule while the K3PO4 solution will have 3 potassium ions per molecule.
K2CrO4 solution
30.0 * 0.15 * 2 = 9
K3PO4 solution
25.0 * 0.080 * 3 = 6
Since 9 is greater than 6, the K2CrO4 solution will have more potassium ions.</span>
B directly; inversely
Pressure and volume have an inverse relationship (when one increases the other increases) while volume and temperature are direct (if one increases so does the other)
Note: these relationships are only true if other factors are constant such as the temperature, and amount (in moles).
The balanced equation for reaction of solid cesium with liquid water
= 2Cs + 2H2O → 2CsOH + H2
cesium react with liquid water to produce cesium hydroxide and hydrogen gas
that is 2 moles of Cs react 2 moles of H2O to form 2 moles CsOH and 1 of hydrogen gas
Answer:lower temp molecules act slower so they come closer together and heated molecules are more spaced out that is why when you put an ice cube in a hot pan the ice melts and turns into a liquid due to heat the molecules space out
Explanation:
Answer:
The attractive force is negative and MgO has a higher melting point
Explanation:
From Couloumb's law:
Energy of interaction, E = k 
where q1 and q2 are the charges of the ions, k is Coulomb's constant and r is the distance between both ions, i.e the atomic radii of the ions.
If you look at Coulomb's law, you note that in the force is negative (because q1 is negative while q2 is positive).
In addition to that, the compounds MgO and NaF have similar combined ionic radii, then we can determine the melting point trend from the amount of energy gotten
The melting point of ionic compounds is determined by 1. charge on the ions 2. size of ions. while NaF has smaller charges (+1 and -1), MgO (+2 and -2) has larger charges and greater combined atomic radii. This implies that the compound with greater force would have a higher melting point.
Hence the compound MgO would have a higher melting point than NaF.