1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brilliant_brown [7]
3 years ago
11

What is the unit rate of this question? y=2x

Mathematics
1 answer:
mylen [45]3 years ago
5 0

,..........................

You might be interested in
At top speed, a coyote can run at a speed of 44 miles per hour. if a coyote could maintain its top speed, how far could it run i
FromTheMoon [43]
The anwser would be B -11 miles you just have to divide by 4
4 0
4 years ago
Read 2 more answers
Help pls is the ans 36???
Dovator [93]

Answer:

area=6

perimeter=36

Step-by-step explanation:

6 0
3 years ago
Yumiko solved |x|>5 by solving x>-5 and x<5. explain the error yumiko made
Whitepunk [10]

Answer:

switched signs around

Step-by-step explanation:

I believe that s/he switched the signs around so

|x|>5 is solved by x<-5 and x>5

but I'm not quite sure, sorry

3 0
2 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Find the slope of the graph
olga55 [171]
3/2 since you move 3 spaces horizontally (x) and 2 spaces up (y)
3 0
2 years ago
Other questions:
  • there were 630 tickets sold. each ticket cost $21. how much money was raised from selling the .tickets
    15·2 answers
  • What is the slope of the line shown?
    11·1 answer
  • Max and Maggie have to clean the house. It takes Max 12 hours to clean the house, while Maggie can complete the task in 4 hours.
    9·1 answer
  • Consider the series ∑n=1∞158n ∑n=1∞158n determine whether the series converges, and if it converges, determine its value. conver
    12·1 answer
  • Round 375.52 to the nearest one
    10·2 answers
  • Evaluate each expression.
    6·1 answer
  • WILL MARK BRAINLIEST!!
    15·1 answer
  • Help me out yall pleaseeee
    9·1 answer
  • Twelve of the 28 students in the 6th grade class have a dog. What is the ratio of students who have a dog to the students who do
    7·1 answer
  • Solve the following equation for x to find the total number of people who became members of a social networking site for a certa
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!