Problem One
Call the radius of the second can = r
Call the height of the second can = h
Then the radius of the first can = 1/3 r
The height of the first can = 3*h
A1 / A2 = (2*pi*(1/3r)*(3h)] / [2*pi * r * h]
Here's what will cancel. The twos on the right will cancel. The 3 and 1/3 will multiply to one. The 2 r's will cancel. The h's will cancel. Finally, the pis will cancel
Result A1 / A2 = 1/1
The labels will be shaped differently, but they will occupy the same area.
Problem Two
It seems like the writer of the problem put some lids on the new solid that were not implied by the question.
If I understand the problem correctly, looking at it from the top you are sweeping out a circle for the lid on top and bottom, plus the center core of the cylinder.
One lid would be pi r^2 = pi w^2 and so 2 of them would be 2 pi w^2
The region between the lids would be 2 pi r h for the surface area which is 2pi w h
Put the 2 regions together and you get
Area = 2 pi w^2 + 2 pi w h
Answer: Upper left corner <<<<< Answer
Answer:

Step-by-step explanation:
The side that is parallel to BC is EF
Find the slope of EF:

Easiest way is just put the formula in point-slope form and simplify.
Let's use point F, which is (6,2)

Simplify:

Add 2 on both sides:

Hope this helped
Answer:
A
Step-by-step explanation:
Smallest to Largest
Natural numbers
Whole numbers
Integers
Rational numbers
Answer
Monomial, Binomial, and Trinomial
Explanation
Polynomials are algebraic expressions that may comprise of exponents which are added, subtracted or multiplied. Polynomials are of different types. Namely, Monomial, Binomial, and Trinomial. A monomial is a polynomial with one term. A binomial is a polynomial with two, unlike terms. A trinomial is an algebraic expression with three, unlike terms. In the following section, we will study about polynomials and types of polynomials in detail.