I will explain you and pair two of the equations as an example to you. Then, you must pair the others.
1) Two circles are concentric if they have the same center and different radii.
2) The equation of a circle with center xc, yc, and radius r is:
(x - xc)^2 + (y - yc)^2 = r^2.
So, if you have that equation you can inmediately tell the coordinates of the center and the radius of the circle.
3) You can transform the equations given in your picture to the form (x -xc)^2 + (y -yc)^2 = r2 by completing squares.
Example:
Equation: 3x^2 + 3y^2 + 12x - 6y - 21 = 0
rearrange: 3x^2 + 12x + 3y^2 - 6y = 21
extract common factor 3: 3 (x^2 + 4x) + 3(y^2 -2y) = 3*7
=> (x^2 + 4x) + (y^2 - 2y) = 7
complete squares: (x + 2)^2 - 4 + (y - 1)^2 - 1 = 7
=> (x + 2)^2 + (y - 1)^2 = 12 => center = (-2,1), r = √12.
equation: 4x^2 + 4y^2 + 16x - 8y - 308 = 0
rearrange: 4x^2 + 16x + 4y^2 - 8y = 308
common factor 4: 4 (x^2 + 4x) + 4(y^2 -8y) = 4*77
=> (x^2 + 4x) + (y^2 - 2y) = 77
complete squares: (x + 2)^2 - 4 + (y - 1)^2 - 1 = 77
=> (x + 2)^2 + (y - 1)^2 = 82 => center = (-2,1), r = √82
Therefore, you conclude that these two circumferences have the same center and differet r, so they are concentric.
The answer is B, 10.
Step-by-step explanation: You plug in the values where the variables are, then follow PEMDAS, beginning with 5 times 3.
Answer:
Step-by-step explanation:
∠Y = ∠P, so AY = AP
Perimeter = AY + AP + 13 = 43
AY + AP = 30
∠Y = ∠P, so AY = AP
AP = 30/2 = 15
It’s 17 because the ranking of the two teams add up to 17