Area = 7 x 7 + 1/2 x 7 x 3
= 49 + 10.5
= 59.5cm2
Answer:
x = 5.4
Step-by-step explanation:
(This question has already been answered, but both of the incorrect ones were deleted, so for future reference...)
Fig A is a scale image of Fig D. These two quadrilaterals are similar, and thus, the side lengths of corresponding sides are proportional. Set the proportion x/3 = 7.2/4 (you could alternatively write it as x/7.2 = 3/4 but for the simplicity's sake, and assuming anyone who has this problem would already know how to solve proportions like these...)
7.2/4 = 1.8
so
x/3 = 1.8
now multiply both sides by 3 to get x = 5.4
The perimeter of a square is the sum of its sides and they
are all equal, so to obtain the length of each of them we divide the perimeter
of the first fence between 4:
P1= 64 feet/4 sides
P1= 16 feet
Then, the length of each side of the second fence will
increase 2 feet at each end, as shown in the figure. We have then that the
perimeter of the second fence is:
P2 = 20 feet x 4 sides
P2 = 80 feet
The sum of the perimeters of both fences is:
PT = P1 + P2
PT = 64 feet + 80 feet
PT = 144 feet
Total cost = 1.17 $ x 144 feet
Total cost = 168.48 $
The total cost of the fences was $ 168.48
Answer:
17 + 3n
Step-by-step explanation:
20, 23,26 ..............
This is an arithmetic series
First term = a = 20
Common difference = second term - first term
d = 23 - 20 = 3
nth terms = a + (n-1)*d
= 20 + (n -1) *3
= 20 + n*3 - 1*3
= 20 + 3n - 3
= 20 - 3 + 3n
= 17 + 3n

<h2><em><u>Hello</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>sorry</u></em><em><u> </u></em><em><u>but</u></em><em><u> </u></em><em><u>it</u></em><em><u>'</u></em><em><u>s</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>Gatheted</u></em><em><u> </u></em><em><u>Question</u></em><em><u> </u></em><em><u>Can</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>fix</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>Can</u></em><em><u> </u></em><em><u>you</u></em><em><u>?</u></em><em><u> </u></em></h2>
<em><u>Sorry</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>answering</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>nonsense</u></em><em><u> </u></em>
<u>#BrainliestBunch</u>