<h3>
Answer: 73</h3>
==================================================
Work Shown:
Check out the diagram below. Note the pair of alternate interior angles that are congruent (each 37 degrees). Then focus on triangle ABC. With the reference angle being at A, this means we use the tangent function because BC = x is the opposite side and AB = 97 is the adjacent side.
tan(angle) = opposite/adjacent
tan(A) = BC/AB
tan(37) = x/97
97*tan(37) = x
x = 97*tan(37)
x = 73.094742859971
For the last step, you'll need a calculator that can handle trig functions. Make sure the calculator is in degree mode. The result here is approximate. This rounds to 73 when rounding to the nearest whole number.
If <3=70°, then find the rest of the angles.
3/4
5/6
7/8
79
1.) m<1=
2.) m<2=
4.) m<5=
3.) m<4=
6.) m<7=
5.) m<6=
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
Answer:
C.
Since the square root of 20 is around 4.5, we know that ≈4.5 is almost at the half mark between 4 and 5 on the number line.
The answer is B, d=8.75h
It’s 8.75h because Michael earns 8.75 per hour the key word is “per hour”
Answer:
Step-by-step explanation:
From the given information:
The uniform distribution can be represented by:

The function of the insurance is:

Hence, the variance of the insurance can also be an account forum.
![Var [I_{(x}) = E [I^2(x)] - [E(I(x)]^2](https://tex.z-dn.net/?f=Var%20%5BI_%7B%28x%7D%29%20%3D%20E%20%5BI%5E2%28x%29%5D%20-%20%5BE%28I%28x%29%5D%5E2)
here;
![E[I(x)] = \int f_x(x) I (x) \ sx](https://tex.z-dn.net/?f=E%5BI%28x%29%5D%20%3D%20%5Cint%20f_x%28x%29%20I%20%28x%29%20%5C%20sx)
![E[I(x)] = \dfrac{1}{1500} \int ^{1500}_{250{ (x- 250) \ dx](https://tex.z-dn.net/?f=E%5BI%28x%29%5D%20%3D%20%5Cdfrac%7B1%7D%7B1500%7D%20%5Cint%20%5E%7B1500%7D_%7B250%7B%20%28x-%20250%29%20%5C%20dx)


Similarly;
![E[I^2(x)] = \int f_x(x) I^2 (x) \ sx](https://tex.z-dn.net/?f=E%5BI%5E2%28x%29%5D%20%3D%20%5Cint%20f_x%28x%29%20I%5E2%20%28x%29%20%5C%20sx)
![E[I(x)] = \dfrac{1}{1500} \int ^{1500}_{250{ (x- 250)^2 \ dx](https://tex.z-dn.net/?f=E%5BI%28x%29%5D%20%3D%20%5Cdfrac%7B1%7D%7B1500%7D%20%5Cint%20%5E%7B1500%7D_%7B250%7B%20%28x-%20250%29%5E2%20%5C%20dx)


∴
![Var {I(x)} = 1250^2 \Big [ \dfrac{5}{18} - \dfrac{25}{144}]](https://tex.z-dn.net/?f=Var%20%7BI%28x%29%7D%20%3D%201250%5E2%20%5CBig%20%5B%20%5Cdfrac%7B5%7D%7B18%7D%20-%20%5Cdfrac%7B25%7D%7B144%7D%5D)
Finally, the standard deviation of the insurance payment is:


≅ 404