Answer:
D: x=12
Step-by-step explanation:
The initial statement is: QS = SU (1)
QR = TU (2)
We have to probe that: RS = ST
Take the expression (1): QS = SU
We multiply both sides by R (QS)R = (SU)R
But (QS)R = S(QR) Then: S(QR) = (SU)R (3)
From the expression (2): QR = TU. Then, substituting it in to expression (3):
S(TU) = (SU)R (4)
But S(TU) = (ST)U and (SU)R = (RS)U
Then, the expression (4) can be re-written as:
(ST)U = (RS)U
Eliminating U from both sides you have: (ST) = (RS) The proof is done.
Answer:
see explanation
Step-by-step explanation:
The equation of a line in point- slope form is
y - b = m(x - a)
where m is the slope and (a, b) a point on the line
here m = 4 and (a, b) = (- 3, 7), hence
y - 7 = 4(x - (- 3)), that is
y - 7 = 4(x + 3) ← second equation in the list