The <em>twelfth</em> element of the <em>geometric</em> sequence is equal to 4,096. (Correct choice: D)
<h3>How to find a determined element of a geometric sequence by exponential formulae</h3>
Sequences are series of elements generated according to at least one condition, usually equations. <em>geometric</em> sequences are generated according to a <em>exponential</em> formulas, whose form and characteristics are described below:
f(n) = a · bⁿ ⁻ ¹ (1)
Where:
- a - First element of geometric sequence
- b - Common ratio of the geometric sequence
- n - Element index within the geometric sequence
If we know that a = 4, b = 2 and n = 12, then the twelfth element of the geometric sequence from the statement is:
f(12) = 4 · 2¹² ⁻ ¹
f(12) = 4 · 2¹¹
f(12) = 4 · 2,048
f(12) = 4,096
The <em>twelfth</em> element of the <em>geometric</em> sequence is equal to 4,096. (Correct choice: D)
To learn more on geometric sequences: brainly.com/question/4617980
#SPJ1
243.87 and 132.37 thts the answer
From what I understood u write 2 ways of how many cookies hannah has
Maybe
36×2
36+36
11183333.3/10^7 = 1.11x10^-7.
Answer:
y² = x² - z²
Step-by-step explanation:
x² - y² = z²
Transpose y the other side
x² - z² = y²
or
y² = x² - z²