1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
3 years ago
14

Everyone do me a favor and nominate "thebecks" as the educator o.f the year!

Mathematics
1 answer:
IRINA_888 [86]3 years ago
6 0
Here is my answer to your question :D

You might be interested in
K is the midpoint of VW.<br> If KV = 3x and KW = 5x-10, what is VW?<br> 22.5<br> 15<br> 7.5<br> 30
LekaFEV [45]

Answer:

15

Step-by-step explanation:

just took the test. x=5 and the answer to the equation is 15

5 0
3 years ago
Pleaseeeeee help I’m so confused
SSSSS [86.1K]

Answer:

4747

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Differentiate with respect to X <br><img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B%20%5Cfrac%7Bcos2x%7D%7B1%20%2Bsin2x%20%7D%20
Mice21 [21]

Power and chain rule (where the power rule kicks in because \sqrt x=x^{1/2}):

\left(\sqrt{\dfrac{\cos(2x)}{1+\sin(2x)}}\right)'=\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'

Simplify the leading term as

\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}

Quotient rule:

\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'=\dfrac{(1+\sin(2x))(\cos(2x))'-\cos(2x)(1+\sin(2x))'}{(1+\sin(2x))^2}

Chain rule:

(\cos(2x))'=-\sin(2x)(2x)'=-2\sin(2x)

(1+\sin(2x))'=\cos(2x)(2x)'=2\cos(2x)

Put everything together and simplify:

\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{(1+\sin(2x))(-2\sin(2x))-\cos(2x)(2\cos(2x))}{(1+\sin(2x))^2}

=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2\sin^2(2x)-2\cos^2(2x)}{(1+\sin(2x))^2}

=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2}{(1+\sin(2x))^2}

=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac{\sin(2x)+1}{(1+\sin(2x))^2}

=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac1{1+\sin(2x)}

=-\dfrac1{\sqrt{\cos(2x)}}\dfrac1{\sqrt{1+\sin(2x)}}

=\boxed{-\dfrac1{\sqrt{\cos(2x)(1+\sin(2x))}}}

5 0
3 years ago
Help me Solve for X (round to the nearest hundreth)
mario62 [17]
The answer is: <span>16.82
it's tan (angle)=opposite/adjacent</span>
7 0
3 years ago
What is 1/10 of 12.5 miles?
vazorg [7]

Answer:

1.25

Step-by-step explanation:

(1/10) x 12.5

4 0
3 years ago
Other questions:
  • if 20 is a factor of a number, then the number must be greater than 30. Which number is a counterexample to the given statement?
    13·1 answer
  • Select True or False for each statement. (10pts)
    13·2 answers
  • Does anyone knows how to solve this question??
    8·2 answers
  • A group of students is investigating how the addition of salt impacts the floatation of an egg in water. Four identical cups wer
    15·2 answers
  • In a series RL circuit, ET = 120 V, R = 40 Ω, and XL = 30 Ω. How much is EL?
    14·1 answer
  • Help help help help help help help help
    12·1 answer
  • Can someone help me with a math test​
    7·2 answers
  • Back at it again can someone help me I'll give out brainly
    7·1 answer
  • Write an equation for the line passing through the points (0,3) and (-9,0) using Y=mx+b format.
    6·1 answer
  • Find the length of side x in simplest radical form with a rational denominator.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!