1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harkovskaia [24]
3 years ago
11

Please answer to receive ten points. I'll vote who answers first the brainliest if its correct. 

Mathematics
1 answer:
beks73 [17]3 years ago
3 0

The distance between points P_1(x_1,y_1) and P_2(x_2,y_2) can be calculated using formula

P_1P_2=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}.

1.

AB=\sqrt{(-7-(-11))^2+(8-4)^2}=\sqrt{16+16}=\sqrt{32}=4\sqrt{2}\approx 5.657.

2.

AC=\sqrt{(-4-(-11))^2+(4-4)^2}=\sqrt{49+0}=\sqrt{49}=7.

3.

CB=\sqrt{(-7-(-4))^2+(8-4)^2}=\sqrt{9+16}=\sqrt{25}=5.

Then

P_{ABC}=5.657+7+5=17.657\approx 17.7

Answer: correct choice is C.

You might be interested in
What is the functions average rate of change over each interval?
telo118 [61]

we can use average rate of change formula

\frac{f(b)-f(a)}{b-a}

(a) x = -3 to x = -2

Firstly, we will find points

(-3, 0) and (-2,2)

now, we can plug these values into formula

and we get

=\frac{2-0}{-2+3}

=2

(b)x = -2 to x =1

Firstly, we will find points

(-2,2) and (1,-4)

now, we can plug these values into formula

and we get

=\frac{-4-2}{1+2}

=-2

(c) x = 0 to x =1

Firstly, we will find points

(0,-3) and (1,-4)

now, we can plug these values into formula

and we get

=\frac{-4+3}{1-0}

=-1

(d) x = 1 to x =2

Firstly, we will find points

(1,-4) and (2,0)

now, we can plug these values into formula

and we get

=\frac{0+4}{2-1}

=4

(e) x = -1 to x =0

Firstly, we will find points

(-1,0)  and (0,-3)

now, we can plug these values into formula

and we get

=\frac{-3-0}{0+1}

=-3


(f) x = -1 to x =2

Firstly, we will find points

(-1,0)  and (2,0)

now, we can plug these values into formula

and we get

=\frac{0-0}{2+1}

=0


3 0
3 years ago
How can I break apart the dividend to find the quotient for 224 divided by 7
lianna [129]

Answer:

see the explanation

Step-by-step explanation:

we have

\frac{224}{7}

decompose the number 224 in prime factors

224=2^{5}7

substitute

\frac{2^{5}7}{7}

Simplify

\frac{2^{5}7}{7}=2^{5}=32

3 0
3 years ago
..............................
Margaret [11]

Answer:

<h3>26 + 10 i</h3>

Step-by-step explanation:

8 0
3 years ago
BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss
Mars2501 [29]
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
7 0
3 years ago
2/3 as a fraction in simplest form
Feliz [49]
2/3 is simplest form. You cannot divide any more to find the simplified form.
7 0
4 years ago
Other questions:
  • A confidence interval for a population mean __________. A. Estimates a likely interval for a population mean B. Estimates likeli
    14·1 answer
  • Prime factorization of 64007​
    15·2 answers
  • Every digits + 798 is greater than any digit in 4325 explain why 4325 is greater than 798
    11·1 answer
  • A survey of 100 students showed that 45 students take english, 25 take math,
    6·1 answer
  • Please help me please
    5·1 answer
  • Train A has a speed 20 miles per hour greater than that of train B. If train A travels 270 miles in the same times train B trave
    12·1 answer
  • Find the unknown side length
    11·1 answer
  • MODELING WITH MATHEMATICS A farmer plants a garden that contains corn and pumpkins. The total area (in square
    10·1 answer
  • Evaluate the expression 2(2x-3y)-5xy where x=-2 and y=-1
    9·1 answer
  • The sum of the ages of two siblings is 23. The brother 2x+ 3 years old and the sister is x + 2 years old. Find the age of each?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!