Answer:
The answer is the second one
The formula for average velocity between two times t1 and t2 of the position function f(x) is (f(t2)-f(t1)) / (t2-t1)
Plugging the values in for the first time period we get (f(2.5)-f(2)) / (2.5-2)
=> (f(2.5)-f(2)) / 0.5
f(2) will be the same for all 4 time periods and is
48(2)-16(2)^2 = 32
Now we plugin the other values
f(2.5) = 48(2.5)-16(2.5)^2 = 20
f(2.1) = 48(2.1)-16(2.1)^2 = 30.25
etc.
f(2.05) = 31.16
f(2.01) = 31.8384
Now plug these values into the formula
(20-32)/0.5 = -24
(30.25-32)/0.1 = -17.5
etc.
= -16.8
= -16.16
Final answer:
2.5s => -24 ft/s
2.1s => -17.5 ft/s
2.05 => -16.8 ft/s
2.01 => -16.16 ft/s
Hope I helped :)
The zero product property tells us that if the product of two or more factors is zero, then each one of these factors CAN be zero.
For more context let's look at the first equation in the problem that we can apply this to:

Through zero property we know that the factor

can be equal to zero as well as

. This is because, even if only one of them is zero, the product will immediately be zero.
The zero product property is best applied to
factorable quadratic equations in this case.
Another factorable equation would be

since we can factor out

and end up with

. Now we'll end up with two factors,

and

, which we can apply the zero product property to.
The rest of the options are not factorable thus the zero product property won't apply to them.
Point two one nine, however, decimals below 1 usually have a zero before the decimal point.
Answer:
To find the area of an irregular polygon you must first separate the shape into regular polygons, or plane shapes. You then use the regular polygon area formulas to find the area of each of those polygons. The last step is to add all those areas together to get the total area of the irregular polygon
and i thank that it is b 120 in2