As shown in the figure, we have two straight line. One of them has a negative slope and the other has a positive one. In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form by:

being m the slope of the line and <span>b the y-intercept of it.
On the other hand, if x = 0 then y = b.
First of all we will order the equations above without </span>inequalities<span> like this:
A. </span>

,

<span>
B. </span>

,
C. 
,
D. 
,

<span>
As shown in the figure b = -1 for one straight and b = 4 for the second one. This values take place when x = 0. So, we discard C and D, because if x = 0, then:
</span>
For C, b = 1 and b = 4
For D, b = -1 and b = -4
Let's analyze A and B. So:
For A, m = 5 and m = 3
For B, m = 5 and m = -3
Therefore, we discard A because of the statement above.
Finally the answer is B. So, the inequalities are:
(1)

(2)

Let's prove this answer. We will take the point (2, 0) that is in the region in gray. So, substituting this point in the inequalities, we have:
(1)

(2)

In fact, this is true.
Answer:
C=2
Step-by-step explanation:
-8(17-12)= -8(5)= -40
then
-2(8-(-2))= -2(10) = -20
so then
-40/-20
=-2
The dog's bowl was empty.
The singer's songs were finished.
Step-by-step explanation:
try the option shown in the attachment, note, all the answers are marked with red colour.
Answer:
- (a) no
- (b) yes
- (c) no
- (d) no
Step-by-step explanation:
"Of the order x^2" means the dominant behavior matches that of x^2 as x gets large. For polynomial functions, the dominant behavior is that of the highest-degree term.
For other functions, the dominant behavior will typically be governed in some other way. Here, the rate of growth of the x·log(x) function is determined by log(x), which has decreasing slope as x increases.
Only answer selection B has a highest-degree term of x^2, so only that one exhibits O(x^2) behavior.