Answer:
Mass = 18.9 g
Explanation:
Given data:
Mass of Al₂O₃ formed = ?
Mass of Al = 10.0 g
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Number of moles of Al:
Number of moles = mass/molar mass
Number of moles = 10.0 g/ 27 g/mol
Number of moles = 0.37 mol
Now we will compare the moles of Al and Al₂O₃.
Al : Al₂O₃
4 : 2
0.37 : 2/4×0.37 = 0.185 mol
Mass of Al₂O₃:
Mass = number of moles × molar mass
Mass = 0.185 mol × 101.9 g/mol
Mass = 18.9 g
Answer:
0.0344 moles and 1.93g.
Explanation:
Molarity is defined as the ratio between moles of a solute (In this case, KOH), and the volume. With molarity and volume we can solve the moles of solute. With moles of solute we can find mass of the solute as follows:
<em>Moles KOH:</em>
15.2mL = 0.0152L * (2.26mol / L) = 0.0344moles
<em>Mass KOH:</em>
0.0344 moles * (56.11g/mol) = 1.93g of KOH
Answer:3.6 x 101 or 8.77 x 10-1
X is always the independent variable
The formula of hydrated copper(II) sulfate is CuSO4.10H2O
<h3>What is the formula of the hydrated copper (ii) sulfate salt?</h3>
The formula of the hydrated copper (ii) sulfate is determined as follows:
Mass of hydrated salt = 12.5 g
Mass of anhydrous salt = 8.0 g
Mass of water = 12.5 - 8 = 4.5 g
mole ratio of water and anhydrous salt is;
4.5/18 : 8.0/159.5
0.562 : 0.05
10 : 1
Water of crystallization (n) = 10.
Therefore, the formula of hydrated copper(II) sulfate is CuSO4.10H2O
Learn more about water of crystallization at: brainly.com/question/26146814
#SPJ1