Answer:
cell,tissue ,organs,organism ,organ system
<h3><u>Answer;</u></h3>
Molarity = 0.25 M
<h3><u>Explanation;</u></h3>
Molarity is given by moles/Liter.
First we find moles:
Number of moles = Mass /molar mass
= (10.7g NH4Cl)/(53.5g/mol NH4Cl)
= 0.200 moles NH4Cl
Then we convert to liters:
= (800mL)*(1L/1000mL) = 0.800L
Therefore; molarity = 0.2moles/0.8L
= 0.25M
Answer:
1.58 M
Explanation:
is 1.66 m concentration.
Which means that 1.66 moles of
are present in 1 kg of the solvent, water.
Mass of water = 1 kg = 1000 g
Moles of
= 1.66 moles
Molar mass of
= 98.079 g/mol
The formula for the calculation of moles is shown below:
Thus,

Total mass = 1000 g + 162.81114 g = 1162.81114 g
Density = 1.104 g/mL
Volume of the solution = Mass / Density = 1162.81114 / 1.104 mL = 1053.27 mL = 1.05327 L
Considering:-
<u>Molarity = moles/ Volume of solution = 1.66 / 1.05327 M = 1.58 M
</u>
Answer:
1.36x10^10L
Explanation:
Step 1:
Determination of the mole of fluorine that contains 3.66x10^32 molecules. This is shown below:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02x10^23 molecules. This implies that 1 mole of fluorine also contains 6.02x10^23 molecules.
Now if 1 mole of fluorine contains 6.02x10^23 molecules,
Therefore, Xmol of fluorine will contain 3.66x10^32 molecules i.e
Xmol of fluorine = 3.66x10^32/6.02x10^23
Xmol of fluorine = 6.08x10^8 moles
Step 2:
Determination of the volume occupied by 6.08x10^8 moles of fluorine.
1 mole of any gas occupy 22.4L at stp. This means that 1 mole of fluorine also occupy 22.4L at stp.
Now if 1 mole of fluorine occupies 22.4L at stp,
Then 6.08x10^8 moles of fluorine will occupy = 6.08x10^8 x 22.4 = 1.36x10^10L
PH is a measure of how acidic/basic water is. The range goes from 0 to 14, with 7 being neutral. pHs of less than 7 indicate acidity, whereas a pH of greater than 7 indicates a base. The pH of water is a very important measurement concerning water quality.