Answer:
Nerve cells release chemical signals into synapses between them (short distance). They also transverse their lengths with an electrical signal that can result in signal travel along a series of cells (long distance).
Explanation:
Nerve cells release neurotransmitters in the synaptic cleft which are capable of affecting nearby cells such as other nerve cells and muscle cells. Neurotransmitter molecules include, among others, serotonin, acetylcholine, dopamine, norepinephrine and histamine. Moreover, the synaptic cleft is the space that separates a neuron cell and its target cell. On the other hand, neurons transmit signals through electrical impulses. Electrical impulses travel long distances in the body carried by axons of the nerves. Thus, nerve impulses connect the brain and spinal cord and they carry signals to different parts of the body.
The main goal of the human genome project is to identify the 3 billion genes that comprise the human genome. Hence the correct answer is option A.
Answer:
The best answer to the question: These cellular structures are utilized in strong involuntary muscle contractions and transmission of electrical impulses, would be: T-Tubules.
Explanation:
In both skeletal and cardiac muscle, not smooth muscle, because of the way that the muscle fibers are conformed into tight bundles of sarcomeres (skeletal muscle) and myocardiocytes (cardiac muscle), there is a need for a series of structures that will ensure that when there is a stimulus from the nervous systems, these stimulus will propagate to all the cells in the fibers, and not just one.
Aside from counting with a neuromuscular motor plate, which will receive the neurotransmitter from the nerve endings and produce the appropriate reactions, as well as propagate that reaction to all the cells that are being stimulated, muscle fibers also have a structure known as T-Tubules. T-Tubules are formations much like roadways of cell plasma membrane that connect not just one, but all the cells within a muscle fiber so that once a stimulus comes, all the cells will initiate the process of calcium release and action potential propagation. These T-Tubules will ensure that electrical impulses reach all muscle cells and that all cells react at the same time as needed.
The gastrocnemius muscle
<em>Have a luvely day!</em>