<span>Answers;
1.Breeding of individuals that have genes for two different characteristics; Dihybrid cross
2.A grid system used to predict possible combinations of genes due to random fertilization; Punnet square
3 A condition in which both alleles are dominant; Codominance
4.when more than two alternatives exist for a gene; multiple alleles
5.A condition in which neither pair of alleles is dominant or recessive, so the traits blend in the phenotype ;Incomplete dominance;
Explanation;
</span>Dihybrid cross;
<span>It involves the breeding of individuals that have genes for two different characteristics. It involves the cross of individuals that are both heterozygous for two different traits. For example two different traits in a pea plant; color and shape; for color we have; Y-allele for yellow seeds and y- allele for green seeds, For Shape trait; R-allele for round seeds and r-allele for wrinkled seeds. So the dihydbrid cross would be (RrYy </span>× RrYy).
<span>
Punnet square;
</span><span>This a grid system or a square diagram that is used to predict possible combinations of genes due to random fertilization. It is used by biologists determine the probability of an offspring having a particular genotype.
</span><span>The letters on the outside of a Punnett Square stand for the parent allele.
</span>
Codominance;
<span>This is a condition in heterozygotes in which both members of an allelic pair are dominant and both contribute to the phenotype.
A good example of codominance is the ABO blood group; A person with blood group AB, it means that both the A allele and B allele are equally expressed.
Multiple alleles
</span><span>This is when more than two alternatives for a gene exist.
Examples of multiple allelism in human;The genes of the ABO blood group system. The human ABO system is controled by three alleles, namely; A-allele, B-allele and O-allele.
Incomplete dominance;
</span><span>This is condition in heterozygotes in which both members of an allelic pair are neither dominant nor recessive to other alleles, so the two traits blend in the phenotype of the individual.
An example; is a snapdragon flower that is pink as a result of cross-pollination between a red flower and a white flower. Which means neither the white allele or the red allele are dominant. </span>
Answer:
Explained below:
Explanation:
Density-dependent factors are biological factors adopted by the population as a resource. The things can be like shelter, food, or different poor resources. Density-dependent factors affect fitful variations in the population as its density fluctuations. If the population is small, these portions typically support improved rates of birth and lower will be the death rates, empowering the population to increase and when the population is big and thick, these factors display that the birth rate is decreased and death rate became higher.
Answer:
A. Pollen, stigma, pollination
Explanation:
Answer:
In the case of catalase, the optimum pH is approximately pH 7.0. That is, catalase works best at a neutral pH. If the solution is too acidic (low pH value) or too basic (high pH value) the catalase is inactive and no longer functions as an enzyme.
hope this helps!!:)
Explanation:
It is positive because our body needs 37C to perform metabolism properly so sweating helps to balance the temperature. We lose water but water is generally provided to body by drinking or any food that has water.