Answer:
.06 meters
Step-by-step explanation:
3/5=.6
.6/9=.06
The area of the interior above the polar axis is -0.858 square units
<h3>The area bounded by a polar curve</h3>
The area bounded by a polar curve between θ = θ₁ and θ = θ₂ is given by

Now, since we have the curve r = 1 - sinθ and we want to find the area of the interior above the polar axis, we integrate from θ = 0 to θ = π, since this is the region above the polar axis.
So, ![A = \int\limits^{\theta_{2} }_{\theta_{1} } {\frac{1}{2}r^{2} } \, d\theta\\= \int\limits^{\pi}_{0} {\frac{1}{2}(1 - sin\theta)^{2} } \, d\theta\\= \int\limits^{\pi}_{0} {\frac{1}{2}[1 - 2sin\theta + (sin\theta)^{2}] } \, d\theta\\= \int\limits^{\pi}_{0} {\frac{1}{2}\, d\theta - \int\limits^{\pi}_{0} 2sin\theta \, d\theta+ \int\limits^{\pi}_{0} (sin\theta)^{2} } \, d\theta\\](https://tex.z-dn.net/?f=A%20%3D%20%5Cint%5Climits%5E%7B%5Ctheta_%7B2%7D%20%7D_%7B%5Ctheta_%7B1%7D%20%7D%20%7B%5Cfrac%7B1%7D%7B2%7Dr%5E%7B2%7D%20%20%7D%20%5C%2C%20d%5Ctheta%5C%5C%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_%7B0%7D%20%7B%5Cfrac%7B1%7D%7B2%7D%281%20%20-%20sin%5Ctheta%29%5E%7B2%7D%20%20%7D%20%5C%2C%20d%5Ctheta%5C%5C%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_%7B0%7D%20%7B%5Cfrac%7B1%7D%7B2%7D%5B1%20%20-%202sin%5Ctheta%20%2B%20%28sin%5Ctheta%29%5E%7B2%7D%5D%20%20%7D%20%5C%2C%20d%5Ctheta%5C%5C%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_%7B0%7D%20%7B%5Cfrac%7B1%7D%7B2%7D%5C%2C%20d%5Ctheta%20-%20%20%5Cint%5Climits%5E%7B%5Cpi%7D_%7B0%7D%202sin%5Ctheta%20%5C%2C%20d%5Ctheta%2B%20%20%5Cint%5Climits%5E%7B%5Cpi%7D_%7B0%7D%20%28sin%5Ctheta%29%5E%7B2%7D%20%7D%20%5C%2C%20d%5Ctheta%5C%5C)

![A = \int\limits^{\pi}_{0} \, d\theta - 2\int\limits^{\pi}_{0} sin\theta \, d\theta -\int\limits^{\pi}_{0} \frac{cos2\theta}{2} } \, d\theta\\= [\theta]_{0}^{\pi} - 2[-cos\theta]^{\pi} _{0} - [\frac{sin2\theta}{4}]_{0}^{\pi} \\= [\theta]_{0}^{\pi} + 2[cos\theta]^{\pi} _{0} - [\frac{sin2\theta}{4}]_{0}^{\pi}\\= [\pi - 0] + 2[cos\pi - cos0] - \frac{ [sin2\pi - sin0]}{4}\\= \pi + 2[-1 - 1] - \frac{ [0 - 0]}{4}\\= \pi + 2[-2] - \frac{ [0]}{4}\\= \pi - 4 - 0\\= \pi - 4\\= 3.142 - 4\\= -0.858](https://tex.z-dn.net/?f=A%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_%7B0%7D%20%5C%2C%20d%5Ctheta%20-%20%202%5Cint%5Climits%5E%7B%5Cpi%7D_%7B0%7D%20sin%5Ctheta%20%5C%2C%20d%5Ctheta%20-%5Cint%5Climits%5E%7B%5Cpi%7D_%7B0%7D%20%5Cfrac%7Bcos2%5Ctheta%7D%7B2%7D%20%7D%20%5C%2C%20d%5Ctheta%5C%5C%3D%20%5B%5Ctheta%5D_%7B0%7D%5E%7B%5Cpi%7D%20-%202%5B-cos%5Ctheta%5D%5E%7B%5Cpi%7D%20_%7B0%7D%20-%20%5B%5Cfrac%7Bsin2%5Ctheta%7D%7B4%7D%5D_%7B0%7D%5E%7B%5Cpi%7D%20%5C%5C%3D%20%5B%5Ctheta%5D_%7B0%7D%5E%7B%5Cpi%7D%20%2B%202%5Bcos%5Ctheta%5D%5E%7B%5Cpi%7D%20_%7B0%7D%20-%20%5B%5Cfrac%7Bsin2%5Ctheta%7D%7B4%7D%5D_%7B0%7D%5E%7B%5Cpi%7D%5C%5C%3D%20%5B%5Cpi%20-%200%5D%20%2B%202%5Bcos%5Cpi%20-%20cos0%5D%20-%20%5Cfrac%7B%20%5Bsin2%5Cpi%20-%20sin0%5D%7D%7B4%7D%5C%5C%3D%20%5Cpi%20%2B%202%5B-1%20-%201%5D%20-%20%5Cfrac%7B%20%5B0%20-%200%5D%7D%7B4%7D%5C%5C%3D%20%5Cpi%20%2B%202%5B-2%5D%20-%20%5Cfrac%7B%20%5B0%5D%7D%7B4%7D%5C%5C%3D%20%5Cpi%20-%204%20-%200%5C%5C%3D%20%5Cpi%20-%204%5C%5C%3D%203.142%20-%204%5C%5C%3D%20-0.858)
So, the area of the interior above the polar axis is -0.858 square units
Learn more about area bounded by polar curve here:
brainly.com/question/27624501
#SPJ1
Answer:
slope(m)= -3
Step-by-step explanation:
B because you have to multiply .60 and 36 than add 4.50