V ( HCl ) = 45.00 mL in liters : 45.00 / 1000 => 0.045 L
M ( HCl ) = ?
V ( NaOH ) = 25.00 / 1000 => 0.025 L
M ( NaOH) = 0.2000 M
number of moles NaOH :
n = M x V = 0.2000 x 0.025 => 0.005 moles of NaOH
Mole ratio:
HCl + NaOH = NaCl + H2O
1 mole HCl ---------- 1 mole NaOH
? mole HCl ---------- 0.005 moles NaOH
moles HCl = 0.005 x 1 / 1
= 0.005 moles of HCl :
M ( HCl ) = n / V
M ( HCl ) = 0.005 / 0.045
= 0.1111 M
hope this helps!
Answer:
(a) 
(b) 
Explanation:
Hello,
In this case, since the both gases behave ideally, with the given information we can compute the moles of He in A:

Thus, since the final pressure is 3.60 bar, we can write:

The moles of helium could be computed via solver as:

Or algebraically:

In such a way, the volume of the compartment B is:

Finally, he mole fraction of He is:

Regards.