The value of Q for 125.0 ml of 0.0500 m Pb(NO3)2 is mixed with 75.0 ml of 0.0200 m NaCl at 25°C is 2.11 × 10^(-6).
Aa we know that, 125mL of 0.06M Pb(NO3)2 is mixed with 75.0 ml of 0.0200 m NaCl.
Given, T = 25°C.
<h3>Chemical equation:</h3>
Pb(NO3)2 + NaCl ---- NaNO3 + PbCl2
PbCl2 in aqueous solution split into following ions
PbCl2 ------ Pb(+2) + 2Cl-
Q = [Pb(+2)] [Cl-]^2
The Concentration of Pb(+2) ions and Cl- ions can be calculated as
[Pb(+2)] = 0.06 × 125/200
= 0.0375
[Cl-] = 0.02 × 75/200
= 0.0075
By substituting all the values, we get
[0.0375] [0.0075]^2
= 2.11 × 10^(-6).
Thus, we calculated that the value of Q for 125.0 ml of 0.0500 m Pb(NO3)2 is mixed with 75.0 ml of 0.0200 m NaCl at 25°C is 2.11 × 10^(-6).
learn more about Ions:
brainly.com/question/13692734
#SPJ4
Empirical formula is the simplest ratio of whole numbers of components in a compound.
Assuming for 100 g of the compound
Cu As S
mass 48.41 g 19.02 g 32.57 g
number of moles 48.41 / 63.5 g/mol 19.02 / 75 g/mol 32.57 / 32 g/mol
= 0.762 mol = 0.2536 mol = 1.018 mol
divide by the least number of moles
0.762 / 0.2536 0.2536 / 0.2536 1.018 / 0.2536
= 3.00 = 1.00 = 4.01
once they are rounded off
Cu - 3
As - 1
S - 4
therefore empirical formula is Cu₃AsS₄
Answer:

Explanation:
Mass ( m ) = 52 kg
Acceleration ( a ) = 5 m / s²
Force ( F ) = ?
According to Newton's second law of motion ,



Hope I helped!
Best regards! :D
Answer:
The answer to your question is 3% H2SO4 solution
Explanation:
Data
Concentration 2 = C₂ = ?
Concentration 1 = C₁ = 15 %
Volume 1 = V₁ = 50 ml
Volume 2 = V₂ = 250 ml
Formula
C₁V₁ = C₂V₂
Solve for C₂
C₂ = C₁V₁ / V₂
Substitution
C₂ = (15)(50) / 250
Simplification and result
C₂ = 3 %
Answer:(a) 6CO2 (g) + 6H2O (l) → C6H12O6 (s) + 6O2 (g)
(b) 5.55*10^37photons
Explanation:
(a) Here we have to write a balanced thermochemical equation for formation of 1.00 mol of glucose.
In this question it has been given that Chlorophyll absorbs light in the 600 to 700 nm region,
1st we will write a chemical equation for biochemical process of photosynthesis is that CO2 and H2O form glucose (C6H12O6) and O2.
6CO2 (g) + 6H2O (l) → C6H12O6 (s) + 6O2 (g)
The heat change off the reaction can be calculated as,
={(1 mol)(6 mol) }- {(6 mol) [H2O]}
=[1 1273.3 kJ + 6(0)] - [6 (-39.5 kJ) + 6 (-285.840 kJ)]
= 2802.74 or 2802.7 kJ
Thus the balanced equation can be written as,
6CO2 (g) + 6H2O (l) → C6H12O6 (s) + 6O2 (g) = 2802.7 kJ for 1.00 mol of glucose.