109.5
tetrahedral shape:
number of electron pair = 4,
number of bonded pair = 4,
number of lone pair = 0.
Answer:
A) pH of Buffer solution = 4.59
B) pH after 5.0 ml of 2.0 M NaOH have been added to 400 ml of the original buffer solution = 4.65
Explanation:
This is the Henderson-Hasselbalch Equation:
![pH = pKa + log\frac{[conjugate base]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%5Cfrac%7B%5Bconjugate%20base%5D%7D%7B%5Bacid%5D%7D)
to calculate the pH of the following Buffer solutions.
It means that you are the brother or friend of the person doing the thumping
Answer:
k= 1.925×10^-4 s^-1
1.2 ×10^20 atoms/s
Explanation:
From the information provided;
t1/2=Half life= 1.00 hour or 3600 seconds
Then;
t1/2= 0.693/k
Where k= rate constant
k= 0.693/t1/2 = 0.693/3600
k= 1.925×10^-4 s^-1
Since 1 mole of the nuclide contains 6.02×10^23 atoms
Rate of decay= rate constant × number of atoms
Rate of decay = 1.925×10^-4 s^-1 ×6.02×10^23 atoms
Rate of decay= 1.2 ×10^20 atoms/s
Hey there!:
K = Ka * Kb / Kw
Ka = 1.8*10⁻⁴
Kb = 10⁻¹⁴ / 6.8*10⁻⁴
K = 1.8*10⁻⁴ * ( 10⁻¹⁴/ 6.8*10⁻⁴ ) * ( 1 / 10⁻¹⁴ )
K = = 1.8 / 6.8
K = 0.265
Answer A
Therefore:
K is less than on the forward reaction is not favorable .
Hope That helps!