Answer:
(FeSCN⁺²) = 0.11 mM
Explanation:
Fe ( NO3)3 (aq) [0.200M] + KSCN (aq) [ 0.002M] ⇒ FeSCN+2
M (Fe(NO₃)₃ = 0.200 M
V (Fe(NO₃)₃ = 10.63 mL
n (Fe(NO₃)₃ = 0.200*10.63 = 2.126 mmol
M (KSCN) = 0.00200 M
V (KSCN) = 1.42 mL
n (KSCN) = 0.00200 * 1.42 = 0.00284 mmol
Total volume = V (Fe(NO₃)₃ + V (KSCN)
= 10.63 + 1.42
= 12.05 mL
Limiting reactant = KSCN
So,
FeSCN⁺² = 0.00284 mmol
M (FeSCN⁺²) = 0.00284/12.05
= 0.000236 M
Excess reactant = (Fe(NO₃)₃
n(Fe(NO₃)₃ = 2.126 mmol - 0.00284 mmol
=2.123 mmol
For standard 2:
n (FeSCN⁺²) = 0.000236 * 4.63
=0.00109
V(standard 2) = 4.63 + 5.17
= 9.8 mL
M (FeSCN⁺²) = 0.00109/9.8
= 0.000111 M = 0.11 mM
Therefore, (FeSCN⁺²) = 0.11 mM
In the question, we are told that there are;
- A loaf containing 33 slices
- A loaf containing 33 slices A package of cheese containing 15 slices
We also know that he is making a sandwich that has 2 pieces of both cheese and bread.
Hence;
Total number of bread and cheese = 33 + 15.
Each loaf should have two pieces of each bread and the cheeses make a total of four pieces.
Therefore he can make = 33 + 15/4 = 12 sandwiches.
43.8 kJ
<h3>
Explanation</h3>
There are two electrodes in a voltaic cell. Which one is the anode?
The lithium atom used to have no oxygen atoms when it was on the reactant side. It gains two oxygen atoms after the reaction. It has gained more oxygen atoms than the manganese atom. Gaining oxygen is oxidation. As a result, lithium is being oxidized.
Oxidation takes place at the anode of a cell. Therefore, the anode of this cell is made of lithium.
Lithium has an atomic mass of 6.94. Each gram of Li would contain 1/6.94 = 0.144 moles of Li atoms. Each Li atom loses one electron in this cell. Therefore, the number of electron transferred, <em>n</em>, equals 0.144 moles for each gram of the anode.
Let
represents the electrical energy produced.
, where
- <em>n</em> is the <em>number of moles</em> electrons transferred,
- <em>F</em> is the Faraday's constant,
- <em>E</em>
is the cell potential,
<em>n </em>= 0.144 mol, as shown above, and
<em>F </em>= 96.486 kJ / (
).
Therefore,
.