Evaluate
at
:
![\vec F(x,y,z) = x\,\vec\imath + y\,\vec\jmath + xy\,\vec k \\\\ \implies \vec F(\vec r(t)) = \vec F(\cos(t), \sin(t), t) = \cos(t)\,\vec\imath + \sin(t)\,\vec\jmath + \sin(t)\cos(t)\,\vec k](https://tex.z-dn.net/?f=%5Cvec%20F%28x%2Cy%2Cz%29%20%3D%20x%5C%2C%5Cvec%5Cimath%20%2B%20y%5C%2C%5Cvec%5Cjmath%20%2B%20xy%5C%2C%5Cvec%20k%20%5C%5C%5C%5C%20%5Cimplies%20%5Cvec%20F%28%5Cvec%20r%28t%29%29%20%3D%20%5Cvec%20F%28%5Ccos%28t%29%2C%20%5Csin%28t%29%2C%20t%29%20%3D%20%5Ccos%28t%29%5C%2C%5Cvec%5Cimath%20%2B%20%5Csin%28t%29%5C%2C%5Cvec%5Cjmath%20%2B%20%5Csin%28t%29%5Ccos%28t%29%5C%2C%5Cvec%20k)
Compute the line element
:
![d\vec r = \dfrac{d\vec r}{dt} dt = \left(-\sin(t)\,\vec\imath+\cos(t)\,\vec\jmath+\vec k\bigg) \, dt](https://tex.z-dn.net/?f=d%5Cvec%20r%20%3D%20%5Cdfrac%7Bd%5Cvec%20r%7D%7Bdt%7D%20dt%20%3D%20%5Cleft%28-%5Csin%28t%29%5C%2C%5Cvec%5Cimath%2B%5Ccos%28t%29%5C%2C%5Cvec%5Cjmath%2B%5Cvec%20k%5Cbigg%29%20%5C%2C%20dt)
Simplifying the integrand, we have
![\vec F\cdot d\vec r = \bigg(-\cos(t)\sin(t) + \sin(t)\cos(t) + \sin(t)\cos(t)\bigg) \, dt \\ ~~~~~~~~= \sin(t)\cos(t) \, dt \\\\ ~~~~~~~~= \dfrac12 \sin(2t) \, dt](https://tex.z-dn.net/?f=%5Cvec%20F%5Ccdot%20d%5Cvec%20r%20%3D%20%5Cbigg%28-%5Ccos%28t%29%5Csin%28t%29%20%2B%20%5Csin%28t%29%5Ccos%28t%29%20%2B%20%5Csin%28t%29%5Ccos%28t%29%5Cbigg%29%20%5C%2C%20dt%20%5C%5C%20~~~~~~~~%3D%20%5Csin%28t%29%5Ccos%28t%29%20%5C%2C%20dt%20%5C%5C%5C%5C%20~~~~~~~~%3D%20%5Cdfrac12%20%5Csin%282t%29%20%5C%2C%20dt)
Then the line integral evaluates to
![\displaystyle \int_C \vec F\cdot d\vec r = \int_0^\pi \frac12\sin(2t)\,dt \\\\ ~~~~~~~~ = -\frac14\cos(2t) \bigg|_{t=0}^{t=\pi} \\\\ ~~~~~~~~ = -\frac14(\cos(2\pi)-\cos(0)) = \boxed{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_C%20%5Cvec%20F%5Ccdot%20d%5Cvec%20r%20%3D%20%5Cint_0%5E%5Cpi%20%5Cfrac12%5Csin%282t%29%5C%2Cdt%20%5C%5C%5C%5C%20~~~~~~~~%20%3D%20-%5Cfrac14%5Ccos%282t%29%20%5Cbigg%7C_%7Bt%3D0%7D%5E%7Bt%3D%5Cpi%7D%20%5C%5C%5C%5C%20~~~~~~~~%20%3D%20-%5Cfrac14%28%5Ccos%282%5Cpi%29-%5Ccos%280%29%29%20%3D%20%5Cboxed%7B0%7D)
Answer:
B) $822
Step-by-step explanation:
The total amount of money she spent can be found by adding her expenses:
312 + 287 + 112 + 111
Once added you get the total amount of:
$822
8 divided by 4 = 2
So two is your answer
The answer would be less. Hope this helps. :)