<span>k = 1.7 x 10^5 kg/s^2
Player mass = 69 kg
Hooke's law states
F = kX
where
F = Force
k = spring constant
X = deflection
So let's solve for k, the substitute the known values and calculate. Don't forget the local gravitational acceleration.
F = kX
F/X = k
115 kg* 9.8 m/s^2 / 0.65 cm
= 115 kg* 9.8 m/s^2 / 0.0065 m
= 1127 kg*m/s^2 / 0.0065 m
= 173384.6154 kg/s^2
Rounding to 2 significant figures gives 1.7 x 10^5 kg/s^2
Since Hooke's law is a linear relationship, we could either use the calculated value of the spring constant along with the local gravitational acceleration, or we can simply take advantage of the ratio. The ratio will be both easier and more accurate. So
X/0.39 cm = 115 kg/0.65 cm
X = 44.85 kg/0.65
X = 69 kg
The player masses 69 kg.</span>
Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
The answer is C because carbon dioxide is trapped in a thick atmosphere.
It is the point in a black hole where nothing, not even light, can escape from.
1.2 percent of 155 million is 1,860,000. Divide that by 12 (for twelve months of the year) and get 155,000. That's the answer. 155,000.