Answer:
b
Step-by-step explanation:
A.
Because in mathematics, a geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio.
Answer:
the solution is (2, -6)
Step-by-step explanation:
Substitute the second equation into the first, replacing y in the first:
2x - (-4x+2) = 10
Simplifying, we get:
2x + 4x - 2 = 10, or:
6x = 12, which yields x = 2.
Substituting 2 for x in the second equation yields y = -4(2) + 2 = 0, or y = -6
Then the solution is (2, -6).
Answer:
The rocket will reach its maximum height after 6.13 seconds
Step-by-step explanation:
To find the time of the maximum height of the rocket differentiate the equation of the height with respect to the time and then equate the differentiation by 0 to find the time of the maximum height
∵ y is the height of the rocket after launch, x seconds
∵ y = -16x² + 196x + 126
- Differentiate y with respect to x
∴ y' = -16(2)x + 196
∴ y' = -32x + 196
- Equate y' by 0
∴ 0 = -32x + 196
- Add 32x to both sides
∴ 32x = 196
- Divide both sides by 32
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds
∴ The rocket will reach its maximum height after 6.13 seconds
There is another solution you can find the vertex point (h , k) of the graph of the quadratic equation y = ax² + bx + c, where h =
and k is the value of y at x = h and k is the maximum/minimum value
∵ a = -16 , b = 196
∴ 
∴ h = 6.125
∵ h is the value of x at the maximum height
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds
Answer:

Step-by-step explanation:
Given

Required
Determine the solution
Since b is a perfect square, the equation can be expressed as:

Apply difference of two squares:

Split:

Remove brackets:

Make a the subject in both equations

The solution can be represented as:
