No it’s not a jelly or a jam
Answer:
I hope the answer is correct
Answer: Neither
The function is not even because it doesn't have y axis symmetry. In other words, reflecting it over the vertical y axis means it doesn't line up with itself. The left half is different from the right half.
The function isn't odd either. Why not? Because rotating it 180 degrees around the origin has the function curve looking completely different. A point like (3,6) will rotate to (-3,-6) which is not on the orange curve. This is just one counter-example as to why the function is not odd.
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:

And the derivative of x:

Now, we can calculate the area of the surface:

We could calculate this integral (not very hard, but long), or use
(1),
(2) and
(3) to get:



Calculate indefinite integral:

And the area:
![A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}](https://tex.z-dn.net/?f=A%3D2%5Cpi%5Cint%5Climits_0%5E%7B10%7Dx%5Csqrt%7B4x%5E2%2B1%7D%5C%2Cdx%3D2%5Cpi%5Ccdot%5Cdfrac%7B1%7D%7B12%7D%5Cbigg%5B%5Cleft%284x%5E2%2B1%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cbigg%5D_0%5E%7B10%7D%3D%5C%5C%5C%5C%5C%5C%3D%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%5Cleft%5B%5Cbig%284%5Ccdot10%5E2%2B1%5Cbig%29%5E%5Cfrac%7B3%7D%7B2%7D-%5Cbig%284%5Ccdot0%5E2%2B1%5Cbig%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5Cdfrac%7B%5Cpi%7D%7B6%7D%5CBig%28%5Cbig401%5E%5Cfrac%7B3%7D%7B2%7D-1%5E%5Cfrac%7B3%7D%7B2%7D%5CBig%29%3D%5Cboxed%7B%5Cdfrac%7B401%5E%5Cfrac%7B3%7D%7B2%7D-1%7D%7B6%7D%5Cpi%7D)
Answer D.