The first one and the third one are correct. because for the when you plug 1 on the first piece wise function you get 3.
f(3) =1. and f(1)=3 so f(1)>f(3)
Might have to experiment a bit to choose the right answer.
In A, the first term is 456 and the common difference is 10. Each time we have a new term, the next one is the same except that 10 is added.
Suppose n were 1000. Then we'd have 456 + (1000)(10) = 10456
In B, the first term is 5 and the common ratio is 3. From 5 we get 15 by mult. 5 by 3. Similarly, from 135 we get 405 by mult. 135 by 3. This is a geom. series with first term 5 and common ratio 3. a_n = a_0*(3)^(n-1).
So if n were to reach 1000, the 1000th term would be 5*3^999, which is a very large number, certainly more than the 10456 you'd reach in A, above.
Can you now examine C and D in the same manner, and then choose the greatest final value? Safe to continue using n = 1000.
Answer: x³+y³=180
Step-by-step explain: let's remember the formula x³+y³=(x+y)(x²-xy+y²) and also x³+y³=(x+y)³-3xy(x+y) then
Answer: 6 girls and each has 4 bows
6* 4 = 24 total